
© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Writing fast trusted
stored functions in
PL/Rust
Jim Mlodgenski

Senior Principal Engineer

Amazon Web Services

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Procedural Language Overview

PostgreSQL allows user-defined functions to be written in a variety of procedural languages

The database server has no built-in knowledge about how to interpret or execute the
function’s source text

PostgreSQL has many procedural languages

– PL/pgSQL

– PL/Tcl

– PL/Perl

– PL/Python

– plv8

– PL/Rust

– And more…

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is a trusted procedural language?

“Trusted” is no indication of quality, it is just an indicator of the
potential access a function may have

Trusted languages do not allow access to database server internals,
the file system and other resources like the network

Only superusers can create functions with untrusted languages

3

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is Rust?

Developed by Mozilla as a language
to give the performance of a low
level language like C with things like
memory management of higher level
languages

Open sourced under the Apache and
MIT licenses

4

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What is PL/Rust?

Allows writing PostgreSQL functions
in Rust

Uses the pgrx extension to bridge
Rust code to PostgreSQL internals

Can be configured as a trusted
language so non-superusers can write
functions with it

CREATE FUNCTION one()
RETURNS int

AS
$$

Ok(Some(1))
$$ LANGUAGE plrust;

5

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Creating a PL/Rust function

6

CREATE FUNCTION one()
RETURNS int

AS
$$

Ok(Some(1))
$$ LANGUAGE plrust;

PL/Rust Validator

Write to pg_proc

Write lib.rs and crate.toml

Check lints

Compile

Update pg_proc

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Storing a compiled function

--
-- Name: one(); Type: FUNCTION; Schema: public; Owner: postgres
--

CREATE FUNCTION public.one() RETURNS integer LANGUAGE plrust AS
$${"src":"\n Ok(Some(1))\n","trusted_pgrx_version":"=1.2.7","lib":{"aarch64-
postgres-linux-
gnu":{"encoding":"GzBase64","symbol":"plrust_fn_oid_16695_16702","encoded":"H4sI
AAAAAAAC_-
39C3xU1dU3jp8zMyGTScgFAoRrJtwMAcLcL4oy4SIBEWKIotZ2MplLEsmNZKLgpQRFBaGVKK0-
aBXUtiRKSytWbW0N2guttvVWS_v4tAHt0yBYCUUlCuT_XXvvM3PmMMOl9Xl-7_v5v4GZffY6a6-
99tprrb323ufsWbtgyeU6WZaUP730nES56lE87xNw33_EcXySR0rH9xRpMsNNk1L_7X82MZUkOfY9BJ8
Tz3HoiefkhLTAyOHVxsRyOlHO8iKHWl6UE1KzTkpIleLp-
BjOUp_ylycllqv4WzRE5dY_wvNnpIbEVCTSVSg3RDr_v1yRVor6UvFpFIwpqcL9fHyKxXUmPjkqXsYmq
Y_kMQWfSSrYVHxG4ENdn5-kTJYmPwafcfgUqWCF-IyP6RL6AZ-
LktAaic9klcyz8TEl0SVjkrITRTpMpKNV9yaorodK__5fxgXgFqiuhyfp2wvRBy4_o-
QZkQyee4be7pXj8lD_bUsB_6uKL_Xf31PAh-iS0-lIgb8oRb2_S4F_uapf1X_3p6BjkJPT-
SAF_tVMX0zS0bGJujw5BZ2lKej0p-D_pyngd6ag87UU-F8RfJ4UfL4v4LYUfO5IQT-cAn5bCnh5Cvo

7

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Why store the binary in pg_proc?

Performance -

Replication -

Backups -

Consistency -

8

Compiling a PL/Rust function may take minutes so storing
the binary avoids the first start penalty

Replicas need the binaries in a transactionally consistent
way and cannot impose a first start penalty

pg_restore cannot take an extended period of time restoring
many PL/Rust functions

There are race conditions on REPLACE when considering a
separate table in the plrust schema

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Making PL/Rust trusted

Rust has some strong safety
properties over C/C++ around
memory

Prevents the use of “unsafe” Rust and
other known safety issues

Uses a specialized standard library to
control OS access

9

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Lints

Statically analyzes the user code
to look for patterns that an
known to violate safety

Throws errors at compile time

Uses a combination of standard
Rust lints and custom PL/Rust
lints

CREATE FUNCTION read_file()
RETURNS text AS

$$
let s = include_str!("/etc/passwd");
Ok(Some(s.into()))

$$ LANGUAGE plrust;

ERROR:
0: `cargo build` failed

...
error: the `include_str`, `include_bytes`,

and `include` macros are forbidden in PL/Rust
--> src/lib.rs:44:17
|

44 | let s =
include_str!("/etc/passwd");

|
^^^^^^^^^^^^^^^^^^^^^^^^^^^

|
note: the lint level is defined here

--> src/lib.rs:25:15 10

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

postgrestd

Fork of the Rust standard library and
implements a variant of std::sys for
system bindings

Some functions are stubbed out
preventing them from being used

Others are implemented using
PostgreSQL features such as the
global allocator using palloc

11

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Configuring PL/Rust

PL/Rust has parameters to configure
how functions are built

Allows PL/Rust to use an existing
Rust environment if necessary

The level of “trustness” can be
adjusted based on specific needs

plrust.work_dir

plrust.path_override

plrust.allowed_dependencies

plrust.compilation_targets

plrust.compile_lints

plrust.tracing_level

12

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

PL/Rust structure

CREATE FUNCTION {fn_name} ({args})

RETURNS {ret}

-- function attributes can go here

AS $$

// PL/Rust function body goes here

// All PL/Rust functions return Result<Option<{ret}>>

$$ LANGUAGE plrust;

13

The function wrapper looks like

any other PostgreSQL function

The return of a PL/Rust function

needs to be of the format

Result<Option<T>>

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Parameter strictness

The STRICT keyword determines if a
function will execute on NULL input

PL/Rust uses STRICT to determine
how a parameter is passed to the
function

CREATE FUNCTION echo(input int)
RETURNS int

AS
$$
Ok(Some(input))

$$ STRICT
LANGUAGE plrust;

CREATE FUNCTION echo(input int)
RETURNS int

AS
$$
Ok(Some(input.unwrap_or_default()))

$$ LANGUAGE plrust;

14

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Data types

Some map to native Rust types Others map to PGRX types

15

PostgreSQL

Type
Rust Type PostgreSQL Type Rust Type

bytea Vec<u8> or &[u8] json Json(serde_json::Value)

text String or &str jsonb JsonB(serde_json::Value)

varchar String or &str date Date

smallint i16 time Time

integer i32 timestamp Timestamp

bigint i64 time with time zone TimeWithTimeZone

oid u32 timestamp with time zone TimestampWithTimeZone

real f32 numeric AnyNumeric

double precision f64 uuid Uuid([u8; 16])

bool bool int4range Range<i32>

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Data types

CREATE FUNCTION sum_and_double (a numeric, b numeric)
RETURNS numeric AS

$$
Ok(Some((a + b) * 2))

$$ STRICT
LANGUAGE plrust;

CREATE FUNCTION moon_landing()
RETURNS date AS

$$
Ok(Some(Date::new(1969, 7, 20)?))

$$ STRICT
LANGUAGE plrust;

16

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Composite types

Uses PgHeapTuple as a structure with getter and setter methods

CREATE FUNCTION get_coords(x int, y int, z int)
RETURNS coords AS

$$
let mut c = PgHeapTuple::new_composite_type("coords")?;

c.set_by_name("x", x)?;
c.set_by_name("y", y)?;
c.set_by_name("z", z)?;

Ok(Some(c))
$$ STRICT
LANGUAGE plrust;

17

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Running Queries

PL/Rust accesses database objects through SPI

There are a number of functions exposed to simplify SPI access

CREATE FUNCTION is_plrust_trusted()
RETURNS bool AS

$$
Ok(Spi::get_one("SELECT lanpltrusted FROM
pg_language WHERE lanname = 'plrust'")?)

$$ LANGUAGE plrust;

18

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Updating rows

SPI is fully available to do more complex things like changing rows
or prepared statements

CREATE FUNCTION add_foo(input int)
RETURNS void AS

$$
Spi::connect(|mut client| {
client.update(
"INSERT INTO foo VALUES ($1)",
None, Some(vec![(PgBuiltInOids::INT4OID.oid(),

input.into_datum())])).map(|_| ())
})?;

Ok(Some(()))
$$ STRICT
LANGUAGE plrust;

19

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Logging

PL/Rust uses the PostgreSQL
logging infrastructure

It provides several macros for
simplicity

Full ereport functionality is
available when needed

CREATE OR REPLACE FUNCTION one()
RETURNS int

AS
$$

log!("This is a log message");
notice!("This is a notice");
warning!("This is a warning");

ereport!(PgLogLevel::LOG,
PgSqlErrorCode::ERRCODE_SUCCESSFUL_COMPLETION,

"Full ereport is available");

Ok(Some(1))
$$ LANGUAGE plrust;

20

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Dynamic function calling

Allows for calling other functions
directly without going through SPI

Exposes the PostgreSQL function call
interface to PL/Rust

Can call any function type including
inbuilt, extensions and user defined
from other languages

CREATE FUNCTION rsoundex(w text)
RETURNS text AS

$$
let result = fn_call("soundex",

&[&Arg::Value(w)])?;

Ok(result)
$$ STRICT LANGUAGE plrust;

21

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Triggers

CREATE FUNCTION double_foo_trigger()
RETURNS trigger AS

$$
let tg_op = trigger.op()?;

let my_new = match tg_op {
INSERT => trigger.new().unwrap(),
_ => error!("This trigger only applies to inserts")

};
let mut my_new = my_new.into_owned();

let col_name = "a";
match my_new.get_by_name::<i32>(col_name)? {

Some(val) => my_new.set_by_name(col_name, val * 2)?,
None => (),

}

Ok(Some(my_new))
$$
LANGUAGE plrust;

22

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Crates

Crates are packages that add
capabilities to Rust

Trusted PL/Rust has an allow list of
crates that can be used

These can be listed by the function
plrust.allowed_dependencies

CREATE FUNCTION randint()
RETURNS bigint AS

$$
[dependencies]
rand = "0.8"

[code]
use rand::Rng;
Ok(Some(rand::thread_rng().gen()))
$$ LANGUAGE plrust;

23

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Performance

Baseline plpgsql function inspired from HammerDB
https://github.com/TPC-Council/HammerDB

CREATE OR REPLACE FUNCTION dbms_random(start_int int, end_int int)
RETURNS int AS

$$
BEGIN
RETURN trunc(random() * (end_int-start_int + 1) + start_int);

END
$$ LANGUAGE plpgsql STRICT;

24

https://github.com/TPC-Council/HammerDB

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Performance

postgres=> EXPLAIN ANALYZE SELECT dbms_random(1, g)
FROM generate_series(1, 1000000) g;

QUERY PLAN

Function Scan on generate_series g

(cost=0.00..260000.00 rows=1000000 width=4)
(actual time=53.588..590.151 rows=1000000 loops=1)

Planning Time: 0.031 ms
Execution Time: 620.852 ms
(3 rows)

25

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Performance

PL/Rust using SPI

CREATE FUNCTION dbms_random (start_int int, end_int int)
RETURNS int AS

$$
Ok(Spi::get_one_with_args(

"SELECT trunc(random() * ($1-$2 + 1) + $3)::int",
vec![(PgBuiltInOids::INT4OID.oid(),

end_int.into_datum()),
(PgBuiltInOids::INT4OID.oid(),
start_int.into_datum()),
(PgBuiltInOids::INT4OID.oid(),
start_int.into_datum())],

)?)
$$ LANGUAGE plrust STRICT;

26

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Performance

postgres=> EXPLAIN ANALYZE SELECT dbms_random(1, g)
FROM generate_series(1, 1000000) g;

QUERY PLAN

Function Scan on generate_series g

(cost=0.00..260000.00 rows=1000000 width=4)
(actual time=55.461..14142.495 rows=1000000 loops=1)

Planning Time: 0.049 ms
Execution Time: 14191.605 ms
(3 rows)

27

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Performance

PL/Rust using a dynamic function call

CREATE FUNCTION dbms_random (start_int int, end_int int)
RETURNS int AS

$$
let r = fn_call::<f64>("random", &[])?;

Ok(Some(f64::trunc((r.unwrap() *
((end_int - start_int + 1) as f64))

+ start_int as f64) as i32))
$$ LANGUAGE plrust STRICT;

28

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Performance

postgres=> EXPLAIN ANALYZE SELECT dbms_random(1, g)
FROM generate_series(1, 1000000) g;

QUERY PLAN

Function Scan on generate_series g

(cost=0.00..260000.00 rows=1000000 width=4)
(actual time=55.750..1851.216 rows=1000000 loops=1)

Planning Time: 0.032 ms
Execution Time: 1896.496 ms
(3 rows)

29

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Performance

PL/Rust using a native crate

CREATE FUNCTION DBMS_RANDOM (start_int int, end_int int)
RETURNS int AS

$$
[dependencies]
rand = "0.8.5"

[code]
use rand::Rng;

Ok(Some(rand::thread_rng().gen_range(start_int..(end_int + 1))))
$$ LANGUAGE plrust STRICT;

30

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Performance

postgres=> EXPLAIN ANALYZE SELECT dbms_random(1, g)
FROM generate_series(1, 1000000) g;

QUERY PLAN

Function Scan on generate_series g

(cost=0.00..260000.00 rows=1000000 width=4)
(actual time=55.754..309.444 rows=1000000 loops=1)

Planning Time: 0.032 ms
Execution Time: 339.965 ms
(3 rows)

31

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Better performance case

CREATE FUNCTION fib_plpgsql
(n numeric)

RETURNS numeric AS
$$
DECLARE
a numeric := 0;
b numeric := 1;
c numeric;

BEGIN
IF n = 0 THEN
RETURN a;

END IF;

FOR i IN 2..n LOOP
c := a + b;
a := b;
b := c;

END LOOP;

RETURN b;
END
$$ IMMUTABLE
LANGUAGE plpgsql;

32

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Better performance case

CREATE FUNCTION fib_plrust
(n numeric)

RETURNS numeric AS
$$
[dependencies]
num-bigint = "0.4.4"

[code]
use num_bigint::BigUint;

let mut a: BigUint = 0_u32.into();
let mut b: BigUint = 1_u32.into();
let ln: u32 =

u32::try_from(n.unwrap())?;

if ln <= 0 {
return Ok(Some(

AnyNumeric::try_from(
a.to_string()

.as_str()).unwrap()));
}

for _ in 1..ln {
let c = a + &b;
a = b;
b = c;

}

Ok(Some(AnyNumeric::try_from(
b.to_string().as_str()).unwrap()))

$$ IMMUTABLE
LANGUAGE plrust;

33

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Better performance case

postgres=> SELECT fib_plpgsql(627177) = fib_plrust(627177);
?column?

t

(1 row)

postgres=> SELECT fib_plpgsql(627178);
ERROR: value overflows numeric format
CONTEXT: PL/pgSQL function fib_plpgsql(numeric) line 12 at
assignment

34

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Better performance case
postgres=> EXPLAIN ANALYZE SELECT fib_plpgsql(627177);

QUERY PLAN

Result (cost=0.00..0.01 rows=1 width=32)
(actual time=0.002..0.002 rows=1 loops=1)
Planning Time: 61542.339 ms
Execution Time: 0.018 ms

(3 rows)

Time: 61543.220 ms (01:01.543)

35

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Better performance case
postgres=> EXPLAIN ANALYZE SELECT fib_plrust(627177);

QUERY PLAN

Result (cost=0.00..0.01 rows=1 width=32)
(actual time=0.002..0.002 rows=1 loops=1)
Planning Time: 1181.729 ms
Execution Time: 0.017 ms

(3 rows)

Time: 1182.533 ms (00:01.183)

36

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Thank you!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Jim Mlodgenski

