
Vector Embedding & Search
in AlloyDB

Pushkar Khadilkar & Vaibhav Jain

February 2024

Introduction

Vector Embeddings

AlloyDB AI

Resources

01

02

03

04

Agenda

Introduction
01

Proprietary + Confidential

PostgreSQL compatibility

The best of Google

Introducing AlloyDB
A new open-source compatible
database engine ready for top-tier
relational database workloads

Proprietary + Confidential

AlloyDB is the highest
performance database for gen AI apps

Industry leading multi-workload performance:

*Compared to PostgreSQL | **Compared to PostgreSQL when using IVFFlat index

4x
faster transactional queries*

10x
faster vector queries**

100x
faster analytical queries*

Proprietary + Confidential

99.99% SLA, inclusive
of maintenance

Automatic and fast
failure recovery

Non-disruptive
management operations

Scale-out storage

Horizontal read
scalability 1000+ vCPUs

Vertically scalable writes

Autopilot capabilities
and embedded AI/ML
make management easy

Integrated with Vertex AI

4x faster for
transactional workloads

Up to 100x faster for
analytical queries

Fully PostgreSQL-compatible

Commercial-grade, without the costs or vendor lock-in

Predictable, transparent pricing

Highly available Highly scalable Intelligent Performant

Proprietary + Confidential

AlloyDB Omni
Run AlloyDB anywhere -
in your datacenter, your
laptop, and in any cloud

Runs anywhere
● Packaged in a downloadable container
● Runs on-premises and in most public clouds; developers can run it on

their laptops

Highly scalable
● Scales to much larger number of CPUs than standard PostgreSQL
● Delivers more than 2x OLTP throughput compared with standard

PostgreSQL

Intelligent
● Automatic vacuum management
● Automatic memory management
● Automatic columnarization
● Integration with Google Cloud Vertex AI Generative AI models

Performant
In-memory columnar delivers 100X faster analytics queries compared with
standard PostgreSQL

Fully PostgreSQL-compatible

Predictable, transparent, pricing at a fraction of the cost of legacy databases

Vector Embeddings
02

Vector Embeddings

A vector is a
mathematical object that
has both magnitude and
direction

A vector embedding is a
specific type of vector
that is used to represent
any kind of data, such as
numbers, text, or images

[0.1, 0.02, 0.3]

Movie

Music

Actor

[0.15, 0.025, 0.4]

Getting value out of unstructured data with embeddings

Embedding
Model

[0.2, 0.5, 1.2, …,
0.4, 0.05, 0.6]

Images, videos, text, songs,
time-series, etc.

Pre-trained
custom encoders

Vectors of numbers
representing the semantic
structure of an entity

Similar objects clustered
together

Data Deep learning
 model

Embedding (vector)
representations

Serving index

Large Language Models (LLM)
● Trained on vast amounts of publically available data.

● Phenomenal for text generation, Q&A, reasoning.

● Rely on the information they were trained on, guided by the prompt.

● Problem: Don’t have access to the business proprietary data or real time information.

● Solution: Retrieval-Augmented-Generation

○ Augment the relevant context in real-time by an external knowledge source.

Databases:

1. Provide the most
up-to-date data

2. Can efficiently store and
search vector
embeddings

3. Are your trusted and
familiar data store

Databases bridge the gap between
LLMs and enterprise Gen AI apps

AlloyDB AI
03

AlloyDB AI

An integrated collection of capabilities for easily
building generative AI enterprise applications

with PostgreSQL

AlloyDB AI

How it works:

Automatically generate embeddings on your
operational data using SQL, with easy access to
Google’s embeddings models

Store, index and query vector embeddings, turning
your AlloyDB database into a vector database with
upto 10x faster vector similarity search

Integrate AlloyDB into your GenAI applications
with Vertex AI and open source frameworks
like LangChain

How it works

How Google databases and LLMs enable enterprise gen AI apps

Pre-step: Your internal data is stored in a
database through the embedding model.

1. Gen AI app uses the embedding model to convert natural
language question (“What’s your return policy?”) to
vectors.

2. Embedding model is used for semantic search on the
database to retrieve the current return policy (“60 days”).

3. Database returns the up-to-date policy to be used as part
of the prompt for the LLM.

4. LLM constructs an accurate answers based on your data
(“Our return policy is 60 days”).

Embedding model

AlloyDB

Pre-step. Internal data

Enterprise
gen AI app

LLM
4. Returns answer based
on your data

3. Creates prompt
with up-to-date data

0. Stored to a database
through embeddings

1. App parses natural
language question

2. Semantic search
finds answer from
database

The functionality is available through google_ml_integration
extension.

1. embedding: Text embedding for the given input.

2. ml_predict_row: Generic ML function inference with JSON

input / output.

Vector Embedding Generation

select

ml_predict_row('projects/PROJECT_ID/locations/us-central1/publishers/goo

gle/models/text-bison', '{"instances":[{"prompt": "What are three

advantages of using AlloyDB as the database server?"}],

"parameters":{"maxOutputTokens":1024, "topK": 40, "topP":0.8,

"temperature":0.2}}');

SELECT embedding(

 model_id => 'textembedding-gecko@001',

 content => consumer_complaint_narrative)

FROM consumer_details;

Vertex AI Integration allows accessing
predictions.

1. Use vector data type for columns, functions.

2. Generate embeddings using embedding function.

3. Index types hnsw, ivfflat & ivf (with SQ8 quantization)

available in AlloyDB for ANN search.

4. Deeper integration with query engine allows upto 10x faster

queries

Vector Embedding Storage & Search

CREATE EXTENSION IF NOT EXISTS vector;

ALTER TABLE furniture ADD COLUMN description_embeddings

vector(768) GENERATED ALWAYS AS

(embedding('textembedding-gecko@001',

description)::vector) STORED;

CREATE INDEX ON furniture

 USING ivfflat (description_embeddings vector_cosine_ops)

 WITH (lists = 20);

Supports pgvector extension for
vector storage and search.

Ivf index

1. Works with pgvector’s vector data type

2. Uses scalar quantization technique

a. Converts floating points into integers

b. Optimizes storage

c. Improves performance (with some recall loss)

i. Original: [0.3411, 0.2113, 0.453322,...] - 4 bytes

ii. Output: [12, 23, 15] - 1 byte

3. Supports indexing upto 8k dimension vector

CREATE INDEX ON furniture

 USING ivf (description_embeddings vector_cosine_ops)

 WITH (lists = 20, quantizer = 'SQ8');

Usage of scalar quantization technique

Resources
04

● AlloyDB (https://cloud.google.com/alloydb)
● AlloyDB Omni (https://cloud.google.com/alloydb/omni)
● AlloyDB AI (https://cloud.google.com/alloydb/ai)
● Codelab: Getting Started with Vector Embeddings for AlloyDB AI (

https://codelabs.developers.google.com/codelabs/alloydb-ai-embedding)
● Demo: Build AI-powered apps on Google Cloud with pgvector, LangChain & LLMs (

https://www.youtube.com/watch?v=Jl1S4ZcSY8k)

Resources

Proprietary + Confidential

Questions ?

