Using PostgreSQL and PostGIS for Climate Resilient Agriculture

Asim Rama Praveen, Sameer Mannava

Outline

- Who are we?
- What is PoCRA?
- Climate impact on agriculture
- Water budget framework
- Water budget based planning for climate resilience
- A tool for field staff representative sample of farm plots
- Conclusion

Who are we?

- A team of field staff, students, consultants, faculty @ IIT Bombay
- Employed by Prof. Milind Sohoni, principal investigator
- Currently deputed on PoCRA

What is PoCRA?

World Bank sponsored Project on Climate Resilient Agriculture \$600 million (Rs. 4500 Cr)

Series of 5 MoUs between IIT Bombay and Department of Agriculture, Maharashtra state

https://www.cse.iitb.ac.in/~pocra/

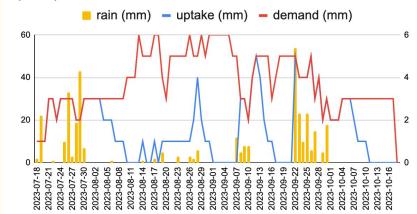
Time frame: 2018 to 2024

Project objective: improve climate resilience of smallholder farmers

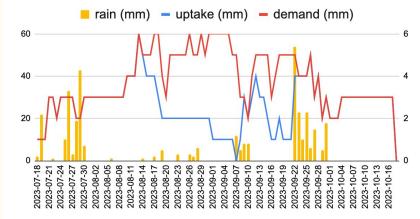
Region: 5000+ villages in 15 districts

Impact of climate change

- Long dry spells during monsoon
 - \circ 25+ days in Aug 2023
 - Crop water deficit
- Wet spells
 - \circ 124mm in 1 hour (Yawatmal on 22 July 2023)
 - Water logging & erosion
- Hivargavhan farmer: (70% loss)
 - \circ cotton yield down from 6 to 2 quintal/acre
- Tembha farmer: (40% loss)
 - \circ cotton yield down from 8 to 5 quintal/acre
- The most impacted: small farmers (<2ha)
 - \circ who depend solely on agriculture


Hivargavhan, (Beed) Oct 2023

Tembha, (Wardha) Sept 2023


Impact of climate change

- Same village different farms vastly different impact
- How to quantify vulnerability?
- How to measure climate resilience?
- How to improve it?

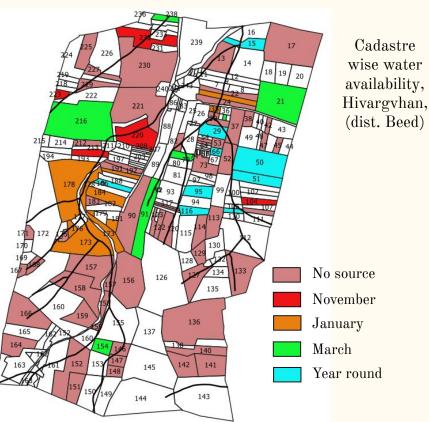
Soybean crop water deficit 2023, shallow soil (20cm), Limba (Beed)

Soybean crop water deficit 2023, deep soil (80cm), Limba (Beed)

Current solution

indianexpress.com

November 30, 2023


10k crore approved to compensate farmers in June 2022-Sept 2023, Maharashtra cabinet told

Alok Deshpande

- Why 10,000 crore? aged methodology
- Lived reality remains grim

Climate resilience: village as a unit

- Baseline: capture lived reality
 - Median yield (quintal/acre)
 - \circ Access to irrigation
 - Availability of water
- Biophysical vulnerability
 - \circ Crop water deficit and their locations
 - $\circ \quad \ \ {\rm Supply \ demand \ allocation \ framework}$
 - Water Policy <u>https://doi.org/10.2166/wp.2023.036</u>
 - CACM https://dl.acm.org/doi/10.1145/3554928
- Enable DoA to target interventions & advisories
- Make it work for 20000 villages
 - $\circ \quad {\rm PostgreSQL}, \, {\rm PostGIS}, \, {\rm Geoserver}$

Climate resilience: village as a unit

- Baseline: capture lived reality
 - Median yield (quintal/acre)
 - Access to irrigation
 - Availability of water
- Biophysical vulnerability
 - \circ Crop water deficit and their locations
 - \circ Supply demand allocation framework
 - Water Policy <u>https://doi.org/10.2166/wp.2023.036</u>
 - CACM

https://dl.acm.org/doi/10.1145/3554928

• Enable DoA to target interventions & advisories

Boots on the ground

Water budget model, developed by IIT Bombay

Water budget frontend

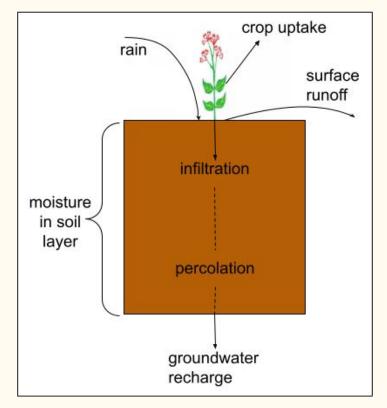
Climate resilience: village as a unit

- Baseline: capture lived reality
 - Median vield (quintal/acre)
 - \circ Access
 - Availabi
- Biophysica
 - Crop wa
 - \circ Supply
 - Water Policy <u>https://doi.org/10.2166/wp.2023.036</u>
 - CACM

https://dl.acm.org/doi/10.1145/3554928

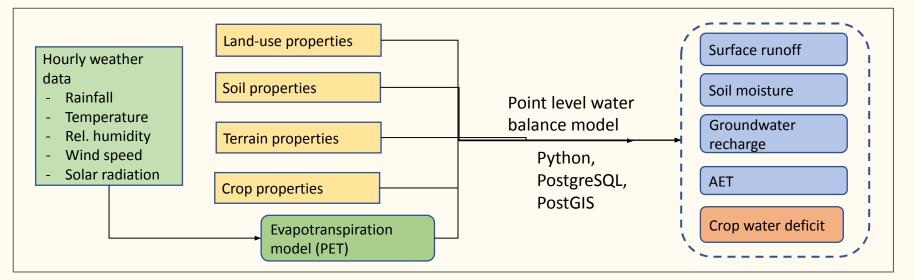
• Enable DoA to target interventions & advisories

All of this is backed by PostgreSQL and PostGIS


Field work, DoA

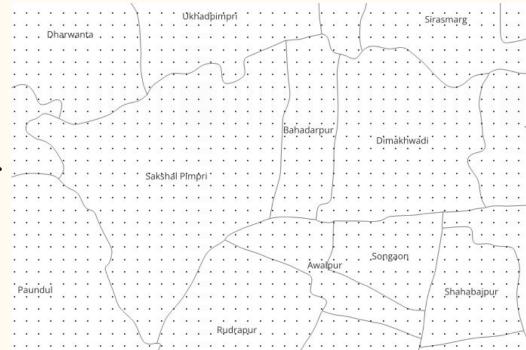
model, developed by IIT Bombay

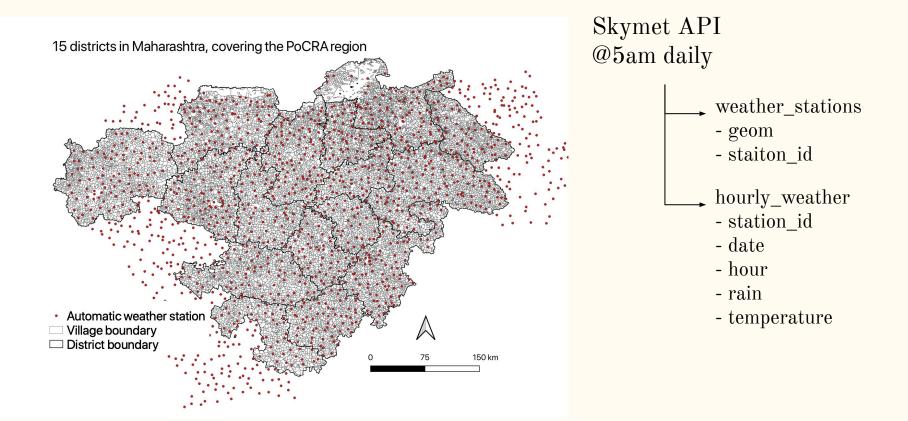
Water budget frontend


Water Budget Model

Water budget model: computations at a point

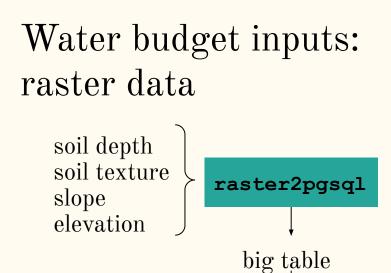
Distribution of rainfall into stocks


Water budget model: computations at a point


- Distribution of rainfall into stocks
- Vulnerability in terms of crop water deficit
- Dynamic: hourly/daily output during monsoon
- Validated in multiple villages

Water budget model: grid of points

- Points table: a district is divided into square grid of size 200m.
- Input parameters are added as columns to the grid points table
- Output table: one new record per crop, per day, per point
- 15 districts \rightarrow 129,000 sq. km.
- 3,225,000 points
- 150 days * 32 crops = 15.48B output records per monsoon



Water budget inputs: hourly weather

Water budget inputs: hourly weather

- Weather stations may go down
- Model doesn't tolerate missing data
- Identify missing data slots (station_id, date, hour)
- Replace null values with data from the nearest weather station

clip at district

district wise rasters

boundary

```
insert into district wise raster
 select
  st clip(
    big.rast,
    st buffer(small.geom, 100),
    -32768
    as rast
 from
  bigtable as big
 inner join
  districts as small
 on
  st intersects (
    big.rast,
    st buffer(small.geom, 100))
 and
  small.district name = '...');
```

Attaching raster data to grid points

- Points table \rightarrow 200m squares
- Raster table pixel size $\rightarrow 30$ m
- Intersection of a point square with raster tile \rightarrow multiple raster values
- Value at the point:

```
(st_summarystats()).mean
```

select

```
point.id,
 (st summarystats (
   st union(
    st clip(
     soil.rast,
     st expand(point.geom, 100)))
 ).mean as soil depth
from
 {district} soildepth as soil
inner join
 {district} points as point
on
 st expand(point.geom, 100)
  && s.rast
group by
p.id
```

Water budget inputs: vector data

- Administrative boundaries

 district, taluka, village

 Land use land cover (LULC)

 agriculture (kharif, rabi), forest, habitation, ...
- st_containsproperly(): grid points within a land use class

```
select
```

```
point.id
Lulc.class_id as landuse_class
```

```
from
```

```
{district}_points as point
join
```

```
{district}_lulc as lulc
```

```
on
```

```
st_containsproperly(
   lulc.geom,
   point.geom
```

```
)
```

Assign nearest weather station to each village

- Villages: polygon geometry
- Weather stations: point geometry
- Lateral join, order by distance (PostGIS <-> operator), limit 1

```
select
  v.vincode,
  nw.station id as nearest station,
  nw.distance
from
  villages v
cross join lateral
  (select
     station id,
     st distance(
       w1.geom,
       v.geom
       as distance
   from
     Weather stations w1
   order by
     v.geom <-> w1.geom
```

```
limit 1) as nw
```

Water budget output: results table

District wise results table

- point_id
- date
- crop
- uptake
- deficit
- soil_moisture
- runoff
- groundwater_recharge

New records inserted daily

Water budget daily cadence

Fetch hourly weather, smoothen missing data

Trigger parallel district runs

District run:

for each weather station in district
read hourly weather
for each point
for each crop
advance state: compute new stocks
hourly to daily accumulation
insert new record into output table

Water Budget: Demand Side

Planning for rabi (post monsoon season)

- Village wise cropping pattern (from DoA)
 - $\circ \quad <\!\! \operatorname{crop, \, crop_area}\!\! > \operatorname{pairs}$
- Exact crop uptake for the village
 - $\circ \quad \text{village_crop_uptake} = \text{avg}((\text{corp_area}/\text{village_area}) * \text{uptake})$
- Volumetric water budget
 - \circ (point wise output in mm) * (village agricultural area)

Planning for rabi (post monsoon season)

• Water available in Hivargavhan (536 ha) on 31 October 2023

Rainfall	Crop uptake	Runoff	Impounded runoff	Soil moisture	Groundwat er
3769 TCM	911 TCM	1515 TCM	2 TCM	70 TCM	394 TCM

- Gram water requirement: 300 mm
- Feasible rabi area under gram: 156 ha (29% agricultural land)

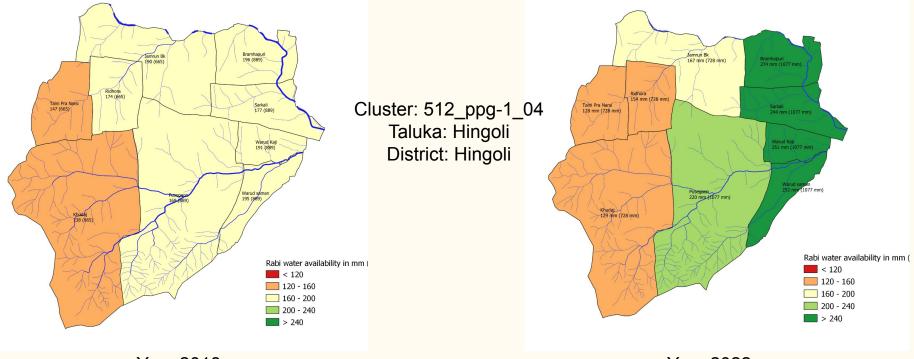
Planning for rabi (post monsoon season)

• Water available in Uivergewhen (526 he) on 21 October 2023

Rainfall	Sustainable cropping pattern for	Groundwater
3769 TCM	the village	394 TCM
	based on water budget	,

- Gram water re
- Feasible rabi area under gram: 154 ha (28% agricultural land)

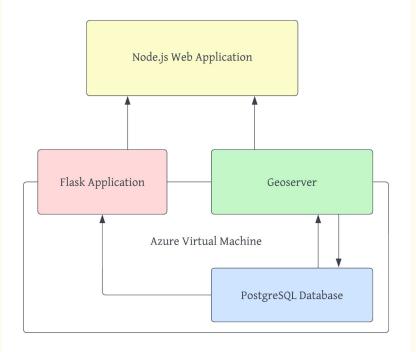
We tried this exercise in12 villages



Takeaways for village community

- Knobs for sustainable rabi cropping pattern:
 - $\circ \quad \ \ {\rm Area\ under\ crop}$
 - \circ Choice of crop
- Long term (before next monsoon)
 - $\circ \quad {\rm Structures \ to \ impound \ surface \ runoff}$

Yearly variation in rabi water availability



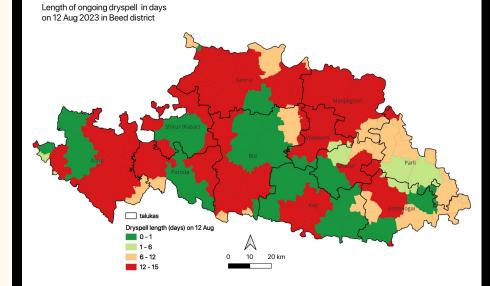
Year 2018

Year 2022

Water Budget Reporting

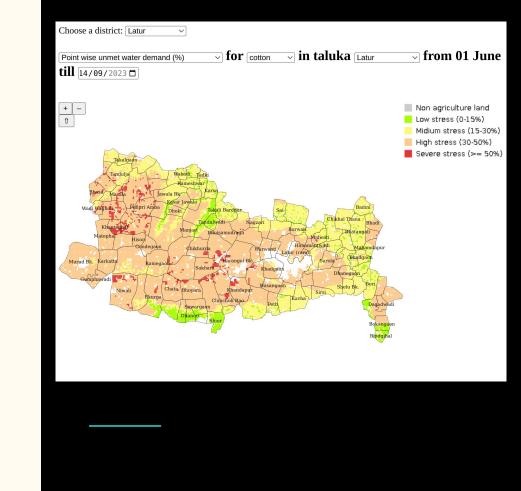
Water Budget Reporting Stack

- Spatial and temporal aggregation of daily water budget results
- End users:
 - \circ DoA planners at district and taluka
 - $\circ \quad \ \ {\rm Village\ community,\ village\ level\ DoA\ staff}$
- Geoserver to host maps
- Flask to run PostGIS queries (e.g. village wise soybean deficit on 07 Oct)
- UDFs to query water budget that accept district code, taluka code, crop, date, etc.

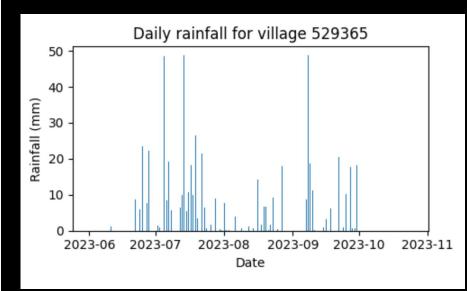

The District View

- Total rainfall
- $\frac{1}{2}$ $\frac{3}{4}$ Rainfall in the last 7 days Length of the ongoing dry spell Forecasted rainfall in the next 5 days

Choose a district: Buldana ✓ Choose a view: Total rain \sim District view for 2023-12-12 + -Lowest (< 150) Mid-Low (150-300) Medium (300-500) Mid-High (500-700) High (700-900) Highest (>= 900)

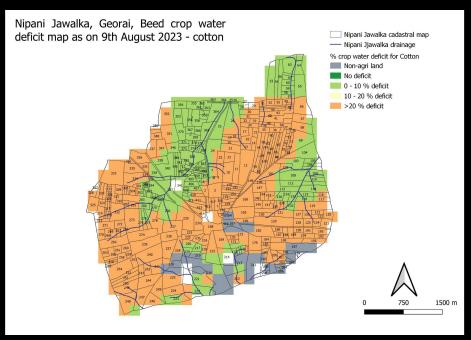

The District View

Length of the ongoing dry spell for Beed district on 12 Aug 2023


The Taluka View

- 1) Deficit percent
- 2) Available soil moisture
- 3) Need for protective irrigation

The Village View


- A plot of daily rainfall
- Cumulative water budget results

Rainfall (mm) in the last 7 days	87.75
Total rainfall (mm) since the start of monsoon	499.00
Average unmet water demand (%)	22
Total groundwater recharge (mm)	84
Total surface water runoff (mm)	208

The Village View

Point wise deficit for cotton, village Nipani Jawalka, on 9 Aug 2023

Sampling Tool

Conducting surveys and validating our models

- Project spread across 20000 villages, 44000 villages in Maharashtra
- How many farmers do we survey in any given village?
- How to pick out of the numerous (~ 500) farm plots?
- How to achieve a good sample space? Four criteria to consider:
 - $\circ \quad {\rm Need \ varying \ types \ of \ soil}$
 - \circ Need varying levels of elevation
 - Need to survey stream-side and land-locked farms
 - $\circ \quad {\rm Need\ a\ good\ geographical\ spread}$

Soil depth partition

- {district}_soildepth district wide raster with soil depth data
- st_clip() clips the raster at the village boundaries
- st_reclass() classifies into predefined ranges
- st_dumpaspolygons() converts the raster into vector geometry

select

```
vincode,
    (st dumpaspolygons(
        st reclass(
            st clip(rast, geom),
            1, \ (25-60]:2,
            (60-9999]:3', '4BUI', 0
    )).*
from
    {district} soildepth
join
    village
on
    st intersects(rast, geom)
```

Elevation partition

- Elevation varies widely from village to village
- Predefined classes not feasible
- st_pixelaspoints(): Divide the village into pixels
- row_number(): Order the pixels by elevation
- st_summarystats(): Get the total number of pixels

```
elevation pixels as (
    select
        vincode, (st pixelaspoints(rast)).*
    from
        elevation raster
),
elevation ranked as (
    select
        vincode, val,
        row number() over (order by val, x, y) as
rownum
    from
        elevation pixels
),
elevation summary as (
    select
        vincode, (st summarystats(rast)).*
    from
        elevation raster
),
```

Elevation partition

• Finally, divide into 33% and 67% percentile classes using a case statement

```
elevation_classified as (
```

select

r.vincode, r.val, r.rownum,

case

when

r.rownum <= s.count/3

then

1 when

rownum > s.count/3 and rownum <= 2*s.count/3</pre>

then

2

else

3

end as elevation_class

from

elevation_ranked r

join

elevation_summary s

using

(vincode)

Stream proximity partition

- staticdata."River" Line geometries with magnitude indicating size of the stream
- st_buffer(): create a polygon geometry indicating 'stream-fed' farms
- Next, we take its complement using st_difference() to represent the 'land-locked' farms

buffered_streams as (

select

st_union(st_buffer(geom::geography,
magnitude)::geometry) as streamfed

from

staticdata."River"

),

select

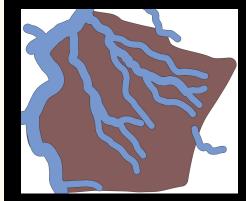
streamfed,

st_difference(v.geom, streamfed) as
landlocked

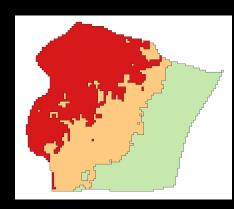
from

buffered_streams

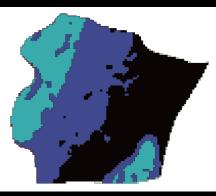
join


village

on


true

Division of the village into distinct biophysical zones

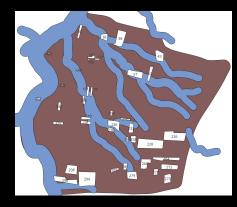

- Intersect the partitions created to form biophysical zones (3*3*2 = 18 types of zones possible)
- A new table is created with 5 columns:
 - $\circ \quad \text{farmplot id} \quad$
 - geometry
 - soil depth class
 - elevation class
 - \circ stream proximity

Soil depth partition

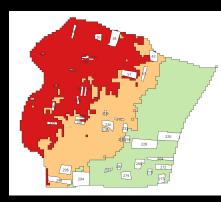
Stream proximity partition

Elevation partition

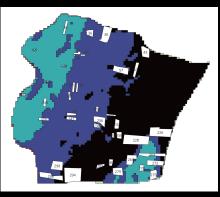
Division of the village into distinct biophysical zones


• random() is employed here so that the tool can be rerun if we desire a slightly different collection of farmplots

select pin, geom, eleclass, depthval, stream region, row number() over (partition by eleclass, depthval, stream region order by random() as index from


biophysical zones

How to achieve a good geographical spread?


- drop_all_touching_farms drops touching farms using st_touches() to evaluate adjacency
- The following algorithm is run:
- for zone in biophysical zones:
 for farmplot in zone if not dropped:
 drop_all_touching_farms(farmplot)
 - The results overlaid on all the partitions ->

Soil depth partition

Stream proximity partition

Elevation partition

In Summary

The infinite loop

- Generate data by capturing reality: baseline. Modernise the state methodology.
- The analysis of cause and effect, the parameters - create the authority and the will to act.
- The rigour and practice translates this will into concrete plans or designs.
- Thereby create space for AI, analytics
- And generate value. We are paid professionals!

Summary

PostgreSQL, PostGIS and geospatial community is

- enabling data driven decisions at village level
- helping DoA exercise its mandate in a sound scientific framework

We are also working on

- Generating accurate land parcel maps with Directorate of Land Records
- Flow based supply demand framework with Forest Dept. Himachal
- Drinking water and road network with CEO of Zilla Parishad, Ratnagiri district

Summary

PostgreSQL, PostGIS and geospatial community is

- enabling data driven decisions at village level
- helping DoA exercise its mandate in a sound scientific framework

IIT Bombay team is forever in gratitude, thank you!

Asim: <u>asimrp@lavabit.com</u>

Sameer: <u>sameer.mannava7@gmail.com</u>