
Postgres 16: What’s New ?
A comprehensive overview of the Latest Features

Shruthi K C
PGConf India 2024

© EnterpriseDB Corporation 2024 — All Rights Reserved.

Shruthi K C
Database Developer
EnterpriseDB
 I have been working in Databases for past 15 years and started working on
Postgres from past 3 years

2

© EnterpriseDB Corporation 2024 — All Rights Reserved.

About Open Source PostgreSQL
• A powerful, open source relational database system with over 35 years of active development

• The power of an Open Source is in the community that surrounds it

• When developers and even companies from different backgrounds, unique perspectives collaborate

around making a technology, the result is a code that is richer, more secure and more innovative

• Strong reputation for reliability, feature robustness, and performance

• Most Admired and Desired Database

• All new features and fixes are thoroughly vetted by a community of contributors and committers

• There is a wealth of information to be found describing how to install and use PostgreSQL through

the official documentation

• Postgres has many mailing lists where you can connect and participate in the community

• Connect with other PostgreSQL users through events and local user groups

3

https://www.postgresql.org/docs/
https://www.postgresql.org/list/
https://www.postgresql.org/about/events/
https://www.postgresql.org/community/user-groups/

© EnterpriseDB Corporation 2024 — All Rights Reserved.

PostgreSQL Releases and Lifecycle

● The PostgreSQL Global Development Group releases a new "major version" once a year
● Each major version receives bug fixes and, if need be, security fixes that are released at least

once every 3 months in what we call a "minor release"

● Major versions are supported for 5 years after the initial release date

● One last minor version is released with fixes before the version goes end of life

● If you are building a new application, it is recommended that you start with the latest major
version of Postgres

● This will guarantee the latest and greatest features, and a continuous flow of minor releases
that fix bugs and improve the security of your database

4

https://www.postgresql.org/support/security/

© EnterpriseDB Corporation 2024 — All Rights Reserved.

● With every new release, Postgres

becomes more and more

compelling and adds great

features that improve the

experience of its users

● Refer to press release and the

release notes for the complete list

of new features and

improvements

5

PostgreSQL 16 Released!

https://www.postgresql.org/about/news/postgresql-16-released-2715/
https://www.postgresql.org/docs/16/release-16.html
https://www.postgresql.org/docs/16/release-16.html
https://www.postgresql.org/docs/16/release-16.html

1

2

3

4

5

© EnterpriseDB Corporation 2024 — All Rights Reserved.

Agenda

Improvements to logical replication

Monitoring Enhancements

Localization and Enhanced JSON Support

Optimizations and Performance Improvements

Access Control and Privilege Administration Overhaul

6

6

© EnterpriseDB Corporation 2024 — All Rights Reserved.

Improvements to Logical Replication

7

● Support Bi-directional Replication

● Allow Logical Replication from Standbys

● Apply large transactions in parallel

● Copy tables in binary format

● Flexible Index usage in the subscriber

● Control Enhancements

© EnterpriseDB Corporation 2024 — All Rights Reserved.

Understanding the Bi-directional Logical Replication

Bidirectional replication is a two-way data exchange, where Node 1
not only receives data from Node 2 but also seamlessly sends its
own data back to Node 2.

What happens prior to PostgreSQL16?

• Node 1 executes SQL and replicates it to Node 2
• Node 2 receives the SQL and also executes it
• The same SQL is then sent back to Node 1, resulting in an

infinite replication of the same data
Why it happens?

The Apply Worker lacks awareness of whether the data originates
locally or comes from replication.

8

Improvements to Logical Replication

© EnterpriseDB Corporation 2024 — All Rights Reserved.

Bidirectional Replication Support in Postgres 16

9

CREATE SUBSCRIPTION <sub-name>
 CONNECTION 'conninfo'
 PUBLICATION <pub-list> [WITH (origin = NONE|ANY)]

ALTER SUBSCRIPTION <sub-name>
 SET (origin = NONE|ANY)

Example:

CREATE SUBSCRIPTION syntax ● Locally generated data will not have a Replication Origin

and the data replicated from another source will have a

Replication Origin

● The origin argument accept two values :-

○ NONE - The subscription will request the publisher

to only send changes that have no origin

associated

○ ANY - The publisher sends changes regardless of

their origin(Writes made on the server + Replicated

data from other servers). The default is ANY

CREATE SUBSCRIPTION mysub
CONNECTION 'dbname=postgres port=5434'
PUBLICATION mypub WITH (origin = NONE);

Improvements to Logical Replication

© EnterpriseDB Corporation 2024 — All Rights Reserved.

Logical Replication from Standbys

10

Improvements to Logical Replication

● This requires wal_level=logical on both primary
and standby

● Allows to create a logical replication slot on a
standby node

● Create a SUBSCRIPTION to a standby node
● Create logical decoding from a read-only standby
● Subscribers can continue with the connection to

the standby even if the standby gets promoted to
the primary

● Reduce the workload on the primary server

© EnterpriseDB Corporation 2024 — All Rights Reserved.

Parallel Application of Large Transactions

● The streaming option can be used to enable streaming of in-progress transactions for a given

subscription. The default value is off.

● If set to parallel, incoming changes are directly applied via one of the parallel apply workers, if

available. The worker remains assigned until the transaction completes.

● Performance improvement in the range of 25-40% has been observed for bulk loads with

streaming = parallel

● max_parallel_apply_workers_per_subscription determines the maximum number of parallel apply

workers per subscription

11

Improvements to Logical Replication

CREATE SUBSCRIPTION mysub CONNECTION 'dbname=postgres port=5434'
 PUBLICATION mypub WITH (streaming = parallel);

© EnterpriseDB Corporation 2024 — All Rights Reserved.

Binary Copy and Index use in Subscriber

● Binary Copy

○ Allow logical replication initial table synchronization to copy rows in binary format

○ Improves performance by 30-40% during SUBSCRIPTION initialization

● Allow indexes other than PK and REPLICA IDENTITY on the subscriber

○ Using REPLICA IDENTITY FULL on the publisher can lead to a full table scan per tuple
change on the subscriber when REPLICA IDENTITY or PK index is not available

○ Subscribers can now utilize B-tree indexes instead of sequential scans to locate rows
○ This change is expected to boost performance of logical replication

12

CREATE SUBSCRIPTION mysub CONNECTION … PUBLICATION mypub WITH (binary = true);

Improvements to Logical Replication

© EnterpriseDB Corporation 2024 — All Rights Reserved.

Logical replication control enhancements

● Non-superusers can create subscriptions
○ pg_create_subscription - a new predefined role is added in Postgres 16
○ The non-superuser much have been granted pg_create_subscription role
○ The non-superusers are required to specify a password for authentication
○ Superusers can set password_required = false for non-superusers that own the subscription

● Perform operations with table owner's privileges
○ The apply process can be configured to perform operations with the table owner's privileges

instead of subscription owner's privileges

13

Improvements to Logical Replication

CREATE SUBSCRIPTION mysub CONNECTION … PUBLICATION mypub WITH (run_as_owner = false);

© EnterpriseDB Corporation 2024 — All Rights Reserved.

Monitoring Enhancements

14

A monitoring boon – pg_stat_io

● comprehensive I/O statistics for troubleshooting performance issues and database optimization
● The view shows cluster-wide I/O statistics that has one row for each combination of backend type, target

I/O object and I/O context
○ backend types: background worker, autovacuum worker, checkpointer, etc
○ target I/O objects: permanent or temporary relations
○ I/O context: normal, vacuum, bulkread and bulkwrite

● The view tracks various I/O operations like reads, writes, extends, hits, evictions, reuses and fsyncs

● A high evictions count can indicate that shared buffers should be increased

● Large numbers of fsyncs by client backends could indicate misconfiguration of shared buffers or of the
checkpointer

● This release adds new fields last_seq_scan and last_idx_scan to the pg_stat_all_tables view that records a
timestamp representing when a table was last scanned

● PostgreSQL 16 also improves the accuracy of the query tracking algorithm used by pg_stat_activity

© EnterpriseDB Corporation 2024 — All Rights Reserved.

Monitoring Enhancements

15

A monitoring boon – pg_stat_io
Here is an example of the statistics you can see in pg_stat_io:

© EnterpriseDB Corporation 2024 — All Rights Reserved.

Localization

16

● PostgreSQL 16 improves general support for text collations, which provide rules for how text is
sorted.

● PostgreSQL 16 builds with ICU support by default and can determine the default ICU locale from the
environment.

● Allows users to define custom ICU collation rules.

https://www.postgresql.org/docs/16/collation.html

© EnterpriseDB Corporation 2024 — All Rights Reserved.

Enhanced JSON Support

17

● PostgreSQL 16 adds more syntax from the SQL/JSON standard, including constructors such as

○ JSON_ARRAY()

○ JSON_ARRAYAGG()

○ JSON_OBJECT()

○ JSON_OBJECTAGG()

● Introduces the ability to use underscores for thousands separators (e.g. 5_432_000) and

non-decimal integer literals, such as 0x1538, 0o12470, and 0b1010100111000.

● Introduced \bind command in psql which allows users to prepare parameterized queries and use

\bind to substitute the variable inside a psql terminal

https://www.postgresql.org/docs/16/functions-json.html

© EnterpriseDB Corporation 2024 — All Rights Reserved.

Enhanced JSON Support

18

● Introduce SQL standard IS JSON predicate
○ IS [NOT] JSON VALUE
○ IS [NOT] JSON SCALAR
○ IS [NOT] JSON ARRAY
○ IS [NOT] JSON OBJECT

○
○

© EnterpriseDB Corporation 2024 — All Rights Reserved.

Performance Improvements

19

● Bulk loading
○ This release brings significant improvements to bulk loading using COPY command, applicable to both single

and concurrent operations
○ Tests have shown remarkable performance enhancements of up to 300% in certain scenarios

● CPU Acceleration using SIMD in x86 and ARM architectures
○ notable performance gains when processing ASCII and JSON strings, as well as array and subtransaction

searches
● Allow VACUUM/ANALYZE to specify buffer usage limit

○ A new option BUFFER_USAGE_LIMIT has been added, which allows user to control the size of shared buffers.
Larger values can make vacuum run faster at the cost of slowing down other concurrent queries

○ Also, a new GUC named vacuum_buffer_usage_limit is added to controls how large to make the access
strategy when the buffer size is not explicitly specified in VACUUM/ANALYZE command

● Improved VACUUM
○ During non-freeze operations, perform page freezing where appropriate. This makes full-table freeze vacuums

less necessary.

https://www.postgresql.org/docs/current/sql-copy.html

© EnterpriseDB Corporation 2024 — All Rights Reserved.

Performance Improvements

20

● Load balancing with multiple hosts in libpq

○ To balance the load across multiple servers when using libpq, a new feature has been added

that lets you specify a connection parameter called load_balance_hosts

○ By setting this parameter to random, libpq will randomly connect to different hosts and their

associated IP addresses

○ This helps distribute the workload when there are multiple clients or frequent connection

setups

○ It's recommended to configure a reasonable value for connect_timeout so that if one of the

nodes is not responding, a new node will be tried

© EnterpriseDB Corporation 2024 — All Rights Reserved.

What’s new in the Postgres 16 query planner / optimizer

21

● Prior to PostgreSQL 16, when the sorting method was chosen

for SELECT DISTINCT queries, the planner only considered

performing a full sort which was more expensive

● The PostgreSQL 16 query planner now considers performing

incremental sorts for SELECT DISTINCT queries

-- Test Setup
CREATE TABLE distinct_test (a INT, b INT);
INSERT INTO distinct_test SELECT x,1 FROM
generate_series(1,1000000)x;
CREATE INDEX on distinct_test(a);
VACUUM ANALYZE distinct_test;

EXPLAIN (ANALYZE, COSTS OFF, TIMING OFF)
SELECT DISTINCT a, b FROM distinct_test;

PG16 EXPLAIN outputPG15 EXPLAIN output

1. Incremental sorts for DISTINCT queries

© EnterpriseDB Corporation 2024 — All Rights Reserved.

What’s new in the Postgres 16 query planner / optimizer

22

● In PostgreSQL 15 and earlier, aggregate functions containing an

ORDER BY or DISTINCT clause would result in the executor

always performing a sort inside the Aggregate node of the plan

● The PostgreSQL 16 query planner now tries to form a plan which

feeds the rows to the plan’s Aggregate node in the correct order.

And the executor is now smart enough to recognize this and

forego performing the sort itself when the rows are pre-sorted

-- Test Setup
CREATE TABLE aggtest (a INT, b text);
INSERT INTO aggtest SELECT a,md5((b%100)::text) FROM
generate_series(1,10) a, generate_series(1,100000)b;
CREATE INDEX ON aggtest(a,b);
VACUUM FREEZE ANALYZE aggtest;

EXPLAIN (ANALYZE, COSTS OFF, TIMING OFF, BUFFERS)
SELECT a, COUNT(DISTINCT b) FROM aggtest GROUP BY a;

PG16 EXPLAIN outputPG15 EXPLAIN output

2. Faster ORDER BY / DISTINCT aggregates

© EnterpriseDB Corporation 2024 — All Rights Reserved.

What’s new in the Postgres 16 query planner / optimizer

23

● When the same value needs to be looked up several times,

Memoize can give a nice performance boost as it can skip

executing its subnode when the required rows have been

queried already and are cached

● The PostgreSQL 16 query planner will now consider using

Memoize for UNION ALL query

-- Test Setup
CREATE TABLE t1 (a INT PRIMARY KEY);
CREATE TABLE t2 (a INT PRIMARY KEY);
CREATE TABLE lookup (a INT);
INSERT INTO t1 SELECT x FROM generate_Series(1,10000) x;
INSERT INTO t2 SELECT x FROM generate_Series(1,10000) x;
INSERT INTO lookup SELECT x%10+1 FROM
generate_Series(1,1000000)x;

ANALYZE t1, t2, lookup;

EXPLAIN (ANALYZE, COSTS OFF, TIMING OFF)
SELECT * FROM (SELECT * FROM t1 UNION ALL SELECT * FROM t2) t
INNER JOIN lookup l ON l.a = t.a;

PG16 EXPLAIN outputPG15 EXPLAIN output

3. Allow memoize atop a UNION ALL

© EnterpriseDB Corporation 2024 — All Rights Reserved.

What’s new in the Postgres 16 query planner / optimizer

24

● In PostgreSQL 16, Parallel Hash Join has been improved

and now supports FULL and RIGHT join types

● This allows queries that have a FULL OUTER JOIN to be

executed in parallel and also allows Right Joins plans to

execute in parallel

-- Setup
CREATE TABLE odd (a INT);
CREATE TABLE even (a INT);
INSERT INTO odd
SELECT a FROM generate_series(1,1000000,2) a;
INSERT INTO even
SELECT a FROM generate_series(2,1000000,2) a;
VACUUM ANALYZE odd, even;

EXPLAIN (ANALYZE, COSTS OFF, TIMING OFF)
SELECT COUNT(o.a), COUNT(e.a) FROM odd o FULL JOIN even e ON o.a =
e.a;

PG16 EXPLAIN outputPG15 EXPLAIN output

4. Parallel Hash Full and Right Joins

© EnterpriseDB Corporation 2024 — All Rights Reserved.

What’s new in the Postgres 16 query planner / optimizer

25

● In PostgreSQL versions before 16, an Anti Join—as you might see if you

use NOT EXISTS in your queries—would always put the table mentioned

in the NOT EXISTS part on the inner side of the join. This meant there was

no flexibility to hash the smaller of the two tables, resulting in possibly

having to build a hash table on the larger table

● The PostgreSQL 16 query planner can now choose to hash the smaller of

the two tables. This can now be done because PostgreSQL 16 supports

Right Anti Joins

-- Setup
CREATE TABLE small(a int);
CREATE TABLE large(a int);
INSERT INTO small
SELECT a FROM generate_series(1,100) a;
INSERT INTO large
SELECT a FROM generate_series(1,1000000) a;
VACUUM ANALYZE small,large;

EXPLAIN (ANALYZE, COSTS OFF, TIMING OFF)
SELECT * FROM small s
WHERE NOT EXISTS(SELECT 1 FROM large l WHERE s.a = l.a);

PG16 EXPLAIN outputPG15 EXPLAIN output

 5. Support Right Anti Join

© EnterpriseDB Corporation 2024 — All Rights Reserved.

What’s new in the Postgres 16 query planner / optimizer

26

● In versions prior to PostgreSQL 16, there was no

support for left join removals on partitioned tables

● The PostgreSQL 16 query planner now allows the LEFT

JOIN removal optimization with partitioned tables

-- Setup
CREATE TABLE part_tab (id BIGINT PRIMARY KEY, payload TEXT) PARTITION BY
HASH(id);
CREATE TABLE part_tab_p0 PARTITION OF part_tab FOR VALUES WITH (modulus 2,
remainder 0);
CREATE TABLE part_tab_p1 PARTITION OF part_tab FOR VALUES WITH (modulus 2,
remainder 1);
CREATE TABLE normal_table (id INT, part_tab_id BIGINT);

EXPLAIN (ANALYZE, COSTS OFF, TIMING OFF)
SELECT nt.* FROM normal_table nt LEFT JOIN part_tab pt ON nt.part_tab_id = pt.id;

PG16 EXPLAIN outputPG15 EXPLAIN output

6. Allow left join removals on partitioned tables

© EnterpriseDB Corporation 2024 — All Rights Reserved.

Access Control & Security

27

● Add libpq connection option require_auth to specify a list of acceptable authentication methods

● Add libpq option sslcertmode to control transmission of the client certificate. The option values are

disable, allow, and require.

● Support for regular expression matching on database and role entries in pg_hba.conf

● Support for Kerberos credential delegation, allowing extensions such as postgres_fdw and dblink to

use authenticated credentials to connect to trusted services

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-REQUIRE-AUTH
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLCERTMODE

© EnterpriseDB Corporation 2024 — All Rights Reserved.

Privilege Administration Overhaul

28

Administering PG Without Having to Be a Superuser

● Allow ALTER GROUP group_name ADD USER user_name to be performed with ADMIN OPTION. Previously

CREATEROLE permission was required.

● Allow roles that create other roles to automatically inherit the new role's rights or the ability to SET ROLE to

the new role. This is controlled by server variable createrole_self_grant.

● Allow GRANT to use WITH ADMIN TRUE/FALSE syntax. Previously only the WITH ADMIN OPTION syntax

was supported.

● Allow users to change the default privileges of only inherited roles.

● Add GRANT to control permission to use SET ROLE. This is controlled by a new GRANT ... SET option.

https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-CREATEROLE-SELF-GRANT

© EnterpriseDB Corporation 2024 — All Rights Reserved.

Postgres 17: What to expect ?

29

Laying Groundwork for an exciting Postgres 17

● Incremental backups

● Logical replication improvements (DDL Replication, Replication of sequences, Reuse of tablesync workers and so on)

● SQL/JSON improvements to make it more standard-compliant

● Improvements in vacuum technology

● Improvements in partitioning technology

● Improve statistics/monitoring

● SLRU optimizations

● Improve locking for better scalability

● Enhance Table AM APIs

● TOAST improvements

Thank You!
PostgreSQL 16: What’s New ?
A comprehensive overview of the Latest Features

Shruthi K C

