
Isolation levels without
the anomaly table
Ben Darnell, Chief Architect, Cockroach Labs
PGConf India, 2024-03-01

About CockroachDB
Built from ground up to meet the demands of today’s data-driven world in the cloud

Relational DB
Durable
Consistent
Familiar

NoSQL DB
 Scalable
 Resilient

Flexible

Cloud
 Elastic

Managed
Modern

CockroachDB
An agile, distributed database

architected and built for the cloud

Fully Managed Service

Guaranteed Transactions

Inherent Resilience & Scale

Familiar, Consistent SQL

..in a truly globally-distributed database

Agenda

● Isolation levels and anomalies
● What does isolation mean for my code?
● Differences between databases
● How to choose an isolation level

Isolation levels and anomalies

SQL Isolation Levels

● READ UNCOMMITTED
● READ COMMITTED
● REPEATABLE READ
● SERIALIZABLE

The Anomaly Table

It’s incomplete

● Researchers have identified more anomalies
• Write skew (Berenson et al, 1995)
• Anti-dependency cycle and more (Adya, 1999)

● And more isolation levels
• Snapshot isolation (Berenson)
• Monotonic view and Consistent View (Adya)

● And implemented old levels in new ways
• Serializable Snapshot Isolation
• SQL Serverʼs READ_COMMITTED_SNAPSHOT option

No one thinks
this way

“My application can tolerate phantom reads but
not write skew, so REPEATABLE READ is the best
isolation level for it.”

What does isolation
mean for my code?

Low isolation needs explicit locks

● In levels below SERIALIZABLE, must sometimes use SELECT FOR UPDATE
• Or FOR SHARE

● Missing locks can allow transactions to incorrectly overwrite each otherʼs data
● Too many locks hurts performance

High isolation causes aborts and retries

● Sometimes two transactions conflict and one must be aborted
• Deadlocks can happen in any isolation level
• More common as isolation level increases

● Application must catch error and retry to avoid user-visible failure

Example

● Balance is read in several places
● What if it changes between

SELECT and UPDATEs?

def transfer(db_conn, from_account, to_account, amount):
 with db_conn.transaction() as txn:
 balance = txn.execute("SELECT balance FROM accounts WHERE id=?",
 from_account).fetchone()[0]
 if balance < amount:
 return
 txn.execute("UPDATE accounts SET balance=balance-? WHERE id=?",
 amount, from_account)
 txn.execute("UPDATE accounts SET balance=balance+? WHERE id=?",
 amount, to_account)

Example: READ COMMITTED

● Each statement sees different
balance values

● Balance could become negative
● Must add FOR UPDATE to

SELECT statement to fix

def transfer(db_conn, from_account, to_account, amount):
 with db_conn.transaction() as txn:
 balance = txn.execute("SELECT balance FROM accounts WHERE id=?",
 from_account).fetchone()[0]
 if balance < amount:
 return
 txn.execute("UPDATE accounts SET balance=balance-? WHERE id=?",
 amount, from_account)
 txn.execute("UPDATE accounts SET balance=balance+? WHERE id=?",
 amount, to_account)

Example: SERIALIZABLE

● First update statement raises
error

• could not serialize
access due to
concurrent update

● Can catch error and retry
● Error is necessary because

database doesnʼt know what
happened in the Python if
statement

def transfer(db_conn, from_account, to_account, amount):
 with db_conn.transaction() as txn:
 balance = txn.execute("SELECT balance FROM accounts WHERE id=?",
 from_account).fetchone()[0]
 if balance < amount:
 return
 txn.execute("UPDATE accounts SET balance=balance-? WHERE id=?",
 amount, from_account)
 txn.execute("UPDATE accounts SET balance=balance+? WHERE id=?",
 amount, to_account)

Example: REPEATABLE READ

● Databases differ
● This example usually works like

SERIALIZABLE
• PostgreSQL
• CockroachDB
• SQL Server
• Oracle

● Sometimes itʼs like READ
COMMITTED

• MySQL

def transfer(db_conn, from_account, to_account, amount):
 with db_conn.transaction() as txn:
 balance = txn.execute("SELECT balance FROM accounts WHERE id=?",
 from_account).fetchone()[0]
 if balance < amount:
 return
 txn.execute("UPDATE accounts SET balance=balance-? WHERE id=?",
 amount, from_account)
 txn.execute("UPDATE accounts SET balance=balance+? WHERE id=?",
 amount, to_account)

Differences between databases

“Allowed, but not in PG”

Write skew and snapshot isolation

● SQL standard says that REPEATABLE READ permits phantom reads
● PostgreSQL̓ s REPEATABLE READ doesnʼt permit phantom reads

• But it does permit write skew
● This means itʼs actually SNAPSHOT ISOLATION

Locking vs multi-versioning (MVCC)

● Two approaches to isolating reads
• Shared lock on all records accessed until end of transaction
• Store multiple versions, overwritten records are not immediately deleted

● Older DBs mostly used locking, newer ones mostly MVCC
● SQL standard tried to be implementation-independent

• But “phantom reads” are mainly relevant to locking implementations

REPEATABLE READ is poorly defined…

● …and thatʼs fine
● Donʼt look to closely at phantom reads and write skew
● Reads repeat, and this is the only universal guarantee

How to choose an isolation level

Performance? It’s complicated

● High isolation has high variance
• A small fraction of transactions take twice as long as usual

● Low isolation is often faster, but not always
• In CockroachDB, TPC-C is slightly faster in SERIALIZABLE than READ COMMITTED
• In other benchmarks, READ COMMITTED can be much faster

● Defaults matter
• Default isolation level gets more optimization effort
• CockroachDB defaults to SERIALIZABLE so weʼve optimized it to be competitive with RC
• Other DBʼs SERIALIZABLE implementations usually have worse performance

Use READ UNCOMMITTED if…

● Consistently low latency is more important than the right answer
● And your database implements READ UNCOMMITTED

• Most donʼt today
• SQL Server does, but consider read_committed_snapshot instead

Use READ COMMITTED if…

● Consistently low latency (at 99+ percentile) is important
● It is difficult to add retry loops to the application

• But itʼs easier to add FOR UPDATE where needed
● Itʼs the default for your database

• Probably the most optimized

Use REPEATABLE READ if…

● The transaction is read-only
• Read-only READ COMMITTED “transactions” donʼt really do anything
• SERIALIZABLE and REPEATABLE READ are equivalent for read-only transactions

● Portability to other databases is not important
• Implementations of REPEATABLE READ differ more than RC or SERIALIZABLE

Use SERIALIZABLE if…

● Data accuracy is paramount
● You are able to use abstractions to manage retry loops
● Another system is already handling retries

• Mobile apps often retry on network errors, so they can retry on DB errors too

Conclusion

Conclusion

● Anomalies arenʼt the most important thing
● Instead, pick isolation level based on

• Blocking behavior
• Client retries

Survive
Anything

Thrive
Everywhere

Scale
Fast

The most highly evolved database on the planet

