
© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Incremental Materialized
Views 101

PGConf India 2024
February 29, 2024

Tushar Amrit
Software Engineer

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Imagine this ….

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

You did it!!

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Inevitable happens

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

What to do?!

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Agenda 📝
Understanding Materialized Views and why we need them

Issues with traditional MVs in PostgreSQL

Getting familiar working with Postgres’ pg_ivm extension

Diving deep into pg_ivm

⚙

��

��

�� ♂

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Views 👀
Virtual tables for simplifying queries

Provides abstraction

Streamlining complex queries by providing an alias

Optimizing performance with database views

��

��

��

⚡

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Schema 🏗

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Schema 🏗

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Creating Fake Data 💾
Using PostgreSQL 16

We create a database named mydatabase and create the tables with indexes

We add 11 million rows in the Users and Products tables and around 4.5 million rows in the

Orders table

The data is created using a Python script using the Faker library to create dummy data and the

psycopg2 Postgres adapter module

The script can be found here

��

��

➕

��

��

https://gist.github.com/tushar-amrit-6/e06ba62223d463bee737e5f7757a61c1

Running a Simple Query
Calculate total Order amount for each User:

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

All these emails and usernames were generated using the Faker library in Python -
https://pypi.org/project/Faker/

https://pypi.org/project/Faker/

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Using View for our query 👀

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Materialized Views - Taking Views to Next Level 🧱
Precomputed results for improved query performance

Persistently store query results

Refresh on-demand for real-time accuracy

Optimizing read-heavy workloads

Can be indexed

No support for temporary Materialized Views

Supported in PG since 9.3

��

��

��

��
��

❌

✅

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Materialized Views in Query Execution 🏁
Comes into picture during query rewriting

Cost-based optimization

The SQL query is parsed and rewritten, considering any Views that might be referenced in

the query

��

��

�� ♂

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Implementing MVs in PG 🖥

The query is executed and used to populate the View at the time the command is issued (unless
WITH NO DATA is used), and may be refreshed later

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Running Same Query on MV

Nearly 10x reduction in execution time��

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Refreshing MVs ⏳

Does a hard and complete refresh of data

Has option of concurrently refreshing data

��

��

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Refreshing our MV ⏳

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Issues with the MV Refresh 🚨
Maintenance overhead

Computationally heavy

Locks during refresh

��

��

�� ♂

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Incrementally Maintaining Views - Taking Views to Boss Level 🕴
The two types of View maintenance

● Immediate

● Deferred

Deferred refresh leads to stale data

Deferred is okay, but we want same transaction

Idea to update only those rows in the base table which are affected

��

��

�� ♂

��

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

It’s time for some ALGEBRA 🧮

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

δ(B)

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Basic Theory for IVM for Natural JOIN 🤔
● View definition

○ V = A ⋈ B, where A and B are the base tables
● Changes to Base Table A

○ A ← (A - ∇A) U ΔA, where ∇A are the deleted tuples and ΔA are the tuples inserted by
the update query

● Changes on the View
○ ∇V = ∇A ⋈ B
○ ΔV = ΔA ⋈ B

● Apply the changes to the View
○ V ← (V - ∇V) U ΔV

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Theory is okay, but how do we implement it? 📚
We have two main approaches:

Using Triggers and Transition Table

Logically decoding WAL

��

��

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

pg_ivm - The Saviour
Extension released by IVM Development Group (led by Yugo Nagata)

Published 1.0 release at the end of April 2022

Compatible with PG 13+

Instead of you having to run REFRESH MATERIALIZED VIEW, this extension performs the

updates automatically and incrementally

��

��

✔
��

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Installing pg_ivm 📦
● To install pg_ivm, download the source code and execute this in the module's directory:

● Execute CREATE EXTENSION command

● Installing pg_ivm creates the create_immv, refresh_immv and get_immv_def functions

https://github.com/sraoss/pg_ivm

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Creating Incrementally Maintained Views ✍

This is equivalent to :

We call a Materialized View supporting IVM an Incrementally Maintainable Materialized View (IMMV)

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Creating IMMV on our Schema ✍

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Running Same Query on IMMV 🚶

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

How pg_ivm works internally?!

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

AFTER Trigger 📣
Enables collection of row sets that include all of the rows inserted, deleted, or modified by the

current SQL statement

These row sets can be referred as tables of specified name

��

��

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Transition Table ⏩
Introduced in Postgres 10

Also known as "pseudo-tables"

Holds data before and after the triggering event (e.g., INSERT, UPDATE, DELETE)

Accessed using NEW and OLD keywords within trigger functions

��

��

⏳
��

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

● Statement-level AFTER triggers are created automatically on all base tables contained in the

View definition query

● Changes that will occur in the View are calculated by a rewritten View query with the modified

tables replaced by transition tables

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Handling Duplicate Rows for DISTINCT Clause 🚶🚶
● If there are two of the same tuples in a View and we would like to delete only one tuple

rather than both
○ We cannot simply use a DELETE statement, because this will delete both tuples

● Similarly, if MV is defined with DISTINCT and there are duplicate tuples in its base table
○ When deleting tuples from the base table, a tuple in the View should be deleted if and

only if the duplicity of the tuple becomes zero
○ Otherwise, the tuple must remain in the View

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Counting Algorithm 🔢
● Algorithm for handling tuple duplicates with DISTINCT clause in IMMV
● When tuples are to be inserted into the View, the count is increased if there is already the same

one; otherwise, if the same tuple doesn't exist, a new tuple is inserted
● Similarly, when tuples are to be deleted from the View, the count is decreased; if the count

becomes zero, this tuple is deleted from the View
● The IVMs has a special column, __ivm_count__, which maintains this count

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

All these emails and usernames were generated using the Faker library in Python -
https://pypi.org/project/Faker/

https://pypi.org/project/Faker/

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Views with Aggregate 📈
● Perform aggregation on the differential rows that occur in the table, and use the results to

update the aggregate value in the View

● Update method varies depending on the type of aggregation

● Some columns are added automatically

○ Number of rows in the entire View and within each group (_ivm_count_...)

○ For avg, additional columns to store the results of count and sum

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Concurrent Execution 🕒
Obtains an exclusive lock

READ COMMITTED isolation level causes a wait

At REPEATABLE READ isolation level or higher, one transaction is aborted

��

��

��

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

pg_ivm Drawbacks 😿
Loss in performance of update of Base Tables

Currently, only built-in aggregate functions are supported and user-defined aggregates

cannot be used

Inner joins including self-join are supported, but outer joins are not supported

Views, materialized Views, inheritance parent tables, partitioned tables, partitions, and

foreign tables cannot be used as the base table

Logical replication is not supported

��

��

�� ♂

��

��

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Conclusion 🎬
With pg_ivm MVs can be updated faster than REFRESH, but it affects table update performance

Useful in situations where “the table is not updated often, but you want the latest query results

immediately when there is an update”

When loading large amounts of data, it is a good idea to temporarily disable automatic View

updates

��

��

��

© 2018 Bloomberg Finance L.P. All rights reserved.

© 2024 Bloomberg Finance L.P. All rights reserved.

Thank you!
Contact me: tamrit@bloomberg.net

mailto:tamrit@bloomberg.net

