
© 2024 All Rights Reserved

1

A PostgreSQL fork for
horizontal scalability: YugabyteDB

Franck Pachot, Developer Advocate

@FranckPachot

© 2024 All Rights Reserved

Franck Pachot

Developer Advocate at Yugabyte

Past:
20+ years in databases, dev and ops, consulting

Oracle ACE Director, AWS Data Hero

Oracle Certified Master, AWS Database Specialty

2

fpachot@yugabyte.com

dev.to/FranckPachot

@FranckPachot

© 2024 All Rights Reserved

PostgreSQL for everything... at scale?

3

PostgreSQL is one of the most popular Open-Source database
- can run high throughput applications (if well-tuned)

- can run with good availability (failover with sync standbys)

🤔there are many extensions and forks to make it distributed:
- bi-directional replication: BDR/EDB PGD, pgactive, pgEdge

- single writer on distributed storage: Aurora, AlloyDB, Neon

- sharding: PostgresXL, Citus, Aurora Limitless

- distributed SQL: Spanner, CockroachDB, YugabyteDB, YDB

Why do they want to break the monolith?

© 2024 All Rights Reserved

Why break the monolith?

4

Cloud can provides multiple data centers, multiple regions
 - can run clusters with all nodes active (availability, latency, data governance)

Cloud resources are expensive if not used with elasticity
 - want to scale CPU / RAM / IO independently, without downtime

Managed services are responsible for operations
 - must operate without downtime (resilience to failures, rolling upgrade online)

On-premises cloud-native (Virtualization, Kubernetes)
 - infrastructure can scale horizontally if all pods are equal

© 2024 All Rights Reserved

PostgreSQL - what is monolithic?

5

You connect your application (ACID reads and writes) to one node

You read and write from shared buffers (shared memory)
The writes are protected from memory loss by one WAL (sync to disk)
Database files can scale (NAS, SAN, EBS) but are not a bottleneck (written asynchronously)

What is monolithic:
- connection is handled by one stateful process that does everything
- RAM can be shared between processors of only one server
 (not though common network)

- WAL is only one sequential stream because of ACID transactions

© 2024 All Rights Reserved

PostgreSQL - scalability / availability

6

In case of failure of the single read/write node:
- all current sessions receive an error and must re-connect

- failover takes time (split-brain detection, cold cache, re-connections)

Can be fast but still longer than the application timeout

In case of workload increase in the single read/write node
- scale-up for more CPU/RAM requires downtime

- scale-out to additional servers possible only for stale reads

Black Friday: When do you

stop the app to scale-up?

© 2024 All Rights Reserved

PostgreSQL - sharding

7

To scale horizontally, we must split the database

On top of multiple databases:
- by the application (more code, more tests)

- by a coordinator (Citus, Aurora limitless)

 🤔 Local transactions (single-shard) are ACID but not global ones

 (Lack of read consistency, global constraints, unique keys, foreign keys)

 🤔 Improves scalability and availability but still not fully resilient, and hard to re-shard when scaling-out

Alternative: sharding within the transactional storage
 (rows, index entries, transaction intents) 👉 Distributed SQL

© 2024 All Rights Reserved

Monolithic PostgreSQL ⨝ Distributed YugabyteDB

APP

NODE-1

YSQL
Query Layer

DocDB
Storage Layer

DISK

1. Parse
2. Analyze, Rewrite
3. Plan
4. Execute

NODE-2

YSQL
Query Layer

DocDB
Storage Layer

DISK

1. Parse
2. Analyze, Rewrite
3. Plan
4. Execute

NODE-3

YSQL
Query Layer

DocDB
Storage Layer

DISK

1. Parse
2. Analyze, Rewrite
3. Plan
4. Execute

NODE

PostgreSQL
Query Layer

PostgreSQL
Access Methods

DISK

1. Parse
2. Analyze, Rewrite
3. Plan
4. Execute

APP

8

Query Layer
(SQL processing)

Storage &
Transactions

© 2024 All Rights Reserved

A fork of PostgreSQL for the query layer

9

Started with PostgreSQL 10
Currently, based on PostgreSQL 11

Work In Progress: merging from PostgreSQL 15
https://github.com/yugabyte/yugabyte-db/tree/pg15/src/postgres

Goal: follow the latest PostgreSQL versions
but with new features controlled by flags (to allow rolling upgrades)

psql (16.0, server 11.2-YB-2.20.1.1-b0)
yugabyte=# select * from version();
 version
--
 PostgreSQL 11.2-YB-2.20.1.1-b0 on aarch64-unknown-linux-gnu, compiled by clang version 16.0.6

https://github.dev/yugabyte/yugabyte-db/tree/pg15/src/postgres

© 2024 All Rights Reserved

Why not an extension?

10

PostgreSQL extensibility is great:
 - Foreign Data Wrapper

 - Table/Index Access Methods

 - Some hooks in the code for extensions

But also some limitations:
 - expects Heap Tables

 - expects tuples with TID, XID

 - expects shared buffers (blocks)

 - no hooks for WAL, syntax

- no threaded connections

YugabyteDB:
 - pushdowns (FDW?), transaction intents (TableAM?)

 - lot of batching (ex: Batched Nested Loop)

 - additional syntax (ex: hash sharding)

 - different cost model, different info in catalog

 - threaded connections (connection manager)

 - independent of system libraries (GLIBC)

© 2024 All Rights Reserved

What it looks like for the user?

11

Primary key and Index use HASH for hash sharding, or ASC/DESC for range,
Auto-split on size, or add SPLIT INTO 8 TABLETS , SPLIT AT ((...),(...))

yugabyte=# \! pgbench -i -IdtpGf -s100 --no-vacuum

yugabyte=# \d pgbench_accounts

 Table "public.pgbench_accounts"
 Column | Type | Collation | Nullable | Default
----------+---------------+-----------+----------+---------
 aid | integer | | not null |
 bid | integer | | |
 abalance | integer | | |
 filler | character(84) | | |
Indexes:
 pgbench_accounts_pkey PRIMARY KEY, lsm (aid HASH)
Foreign-key constraints:
 pgbench_accounts_bid_fkey FOREIGN KEY (bid) REFERENCES pgbench_branches(bid)
Referenced by:
 TABLE pgbench_history CONSTRAINT pgbench_history_aid_fkey FOREIGN KEY (aid) REFERENCES pgbench_accounts(aid)

 create table pgbench_accounts
 (aid int not null,bid int,abalance int,filler char(84))
 with (fillfactor=100);
 alter table pgbench_accounts add primary key (aid);
 copy pgbench_accounts from stdin;

© 2024 All Rights Reserved

What it looks like for the system?

12

Can connect to all nodes, Read and writes are balanced over all nodes

yugabyte=# \! pgbench -n -N -c 10 -T 60

© 2024 All Rights Reserved

What it looks like for the application?

13

SPLIT AT VALUES is optional (auto-splitting when table grows)
DDL is not (yet) transactional, but does not lock concurrent DML
(optimistic locking for no downtime migrations)

yugabyte=# create index acc_bal
 on pgbench_accounts(abalance ASC)
 -- split at values ((-4000) , (-1000) , (0) , (1000) , (4000))
;

yugabyte=# create extension pgcrypto;
yugabyte=# alter table pgbench_accounts add column ext_id uuid;
yugabyte=# update pgbench_accounts set ext_id=gen_random_uuid();
yugabyte=# create unique index acc_ext
 on pgbench_accounts (ext_id hash) include (aid);

© 2024 All Rights Reserved

What it looks like for developer?

14

 QUERY PLAN
--
 Limit (actual time=0.797..3.102 rows=1000 loops=1)
 -> Index Only Scan using acc_bal on pgbench_accounts (actual time=0.796..3.035 rows=1000 loops=1)
 Heap Fetches: 0
 Storage Index Read Requests: 2
 Storage Index Read Execution Time: 2.717 ms
 Planning Time: 0.067 ms
 Execution Time: 3.173 ms
 Storage Read Requests: 2
 Storage Read Execution Time: 2.717 ms
 Storage Write Requests: 0
 Catalog Read Requests: 0
 Catalog Write Requests: 0
 Storage Flush Requests: 0
 Storage Execution Time: 2.717 ms
 Peak Memory Usage: 14 kB
(15 rows)

yugabyte=# explain (analyze, dist, costs off, summary on)
 select from pgbench_accounts
 order by abalance asc fetch first 1000 rows only;

True Index Only Scan (no need to vacuum)

catalog is on yb-master
(cluster metadata)

Read / Write requests are
 - batched
 - parallelized
between YSQL (PostgreSQL backend)
and DocDB (Distributed Storage and
Transaction) Raft leaders in yb-tserver nodes

© 2024 All Rights Reserved

Joins can scale in Distributed SQL

15

 QUERY PLAN
--
 Aggregate (actual time=27.323..27.323 rows=1 loops=1)
 -> YB Batched Nested Loop Join (actual time=17.209..27.205 rows=1657 loops=1)
 Join Filter: (pgbench_history.aid = pgbench_accounts.aid)
 -> Seq Scan on pgbench_history (actual time=4.375..4.515 rows=1657 loops=1)
 Remote Filter: (delta > 0)
 Storage Table Read Requests: 1
 Storage Table Read Execution Time: 4.281 ms
 -> Index Scan using pgbench_accounts_pkey on pgbench_accounts (actual time=10.269..10.565 rows=828 loops=2)
 Index Cond: (aid = ANY (ARRAY[pgbench_history.aid, $1, $2, ..., $1023]))
 Storage Table Read Requests: 1
 Storage Table Read Execution Time: 9.653 ms
 Planning Time: 0.495 ms
 Execution Time: 27.604 ms
 Storage Read Requests: 3
 Storage Read Execution Time: 23.587 ms

yugabyte=# explain (analyze, dist, costs off, summary on)
 /*+ Set(yb_bnl_batch_size 1024)*/
 select count(aid) from pgbench_history
 join pgbench_accounts using(aid) where delta>0;

Joining 10k rows 176ms
 👉 50k rows joins second

© 2024 All Rights Reserved

Shards are LSM-Trees (RocksDB with read optimizations)

16

 QUERY PLAN
--
Unique (actual time=1.088..73.485 rows=100000 loops=1)
 -> Index Only Scan using pgbench_account_abal on pgbench_accounts (actual time=1.087..31.300 rows=100000 loops=1)
 Heap Fetches: 0
 Storage Index Read Requests: 98
 Storage Index Read Execution Time: 4.545 ms
 Metric rocksdb_number_db_seek: 98.000
 Metric rocksdb_number_db_next: 100097.000
 Metric rocksdb_number_db_seek_found: 98.000
 Metric rocksdb_number_db_next_found: 100096.000
 Metric rocksdb_iter_bytes_read: 4249346.000
 Metric docdb_keys_found: 100097.000
 Metric ql_read_latency: sum: 38190.000, count: 98.000

yugabyte=# explain (analyze, dist, debug, costs off, summary off)
 select distinct aid
 from pgbench_accounts
 order by aid
;

RocksDB LSM-Tree
- seek() to key (or key prefix)
- next() to read row/column versions

Rpc (network calls)

© 2024 All Rights Reserved

SQL execution, read/write to Tablets

17

© 2024 All Rights Reserved

A fork of PostgreSQL for the query layer

18

© 2024 All Rights Reserved

YSQL (Query Layer)

19

create table demo (
 k bigserial primary key
, v int default 0);
insert into demo
 select from generate_series
 (1,1000000);
\watch 0.001

https://share.firefox.dev/3I5HS3e

PostgreSQL

YugabyteDB
additions

YugabyteDB
pggate

YugabyteDB
-> tserver client

https://share.firefox.dev/3I5HS3e

© 2024 All Rights Reserved

DocDB (Storage and Transactions)

20

tserver tablet

DocDB write

RocksDB

© 2024 All Rights Reserved

DocDB (Raft replication)

21

Update Raft Log

Commit write

© 2024 All Rights Reserved

Replication, Compaction, Auto-Splitting

22

Tablets are split on range of ASC/DESC primary key

or range of HASH.

💡 Automatically split when growing

Each tablet has IntentsDB (provisional records,

committed or not) and RegularDB (committed only)

LSM-Trees (RocksDB).

💡 Tablets are Raft group (read/write to leaders)

Each RocksDB has one writable MemTable, flushed

to immutable SST Files + Level 0 universal compaction

💡 Compacted to reduce space and read amplification

https://dev.to/yugabyte/testing-lsm-tree-merge-for-size-amplification-in-yugabytedb-2kh9

https://dev.to/yugabyte/yugabytedb-auto-sharding-2ahc

https://dev.to/yugabyte/testing-lsm-tree-merge-for-size-amplification-in-yugabytedb-2kh9
https://dev.to/yugabyte/yugabytedb-auto-sharding-2ahc

© 2024 All Rights Reserved

Raft replication

SQL execution

Sharding
1

2

2

2
1. Write operation sent to Leader
2. Leader writes to its WAL and replicates to followers in parallel
3. Followers apply to their WAL
4. ACK to the Leader (wait local WAL write + quorum ACK)
5. Write to memtable
6. ACK to SQL layer
7. Followers apply all previous requests to memstore when

they get their next write request/heartbeat from Leader

3

3

4

4

rocksdb
memtable5OR

rocksdb
memtable

rocksdb
memtable

7

6

23

Raft
Follower

Raft
Leader

Raft
follower

W
A

L

W
A

L
W

A
L

7

© 2024 All Rights Reserved

Tablets and data distribution

24

The key/value read and writes are per tablet (after sharding):

● Table rows and Index entries are distributed to tablets (by hash or range)
● Tablets are replicated to tablet peers (Raft groups)
● tablet peers have an IntentsDB to support transactional writes
● tablet peers store their committed versions in RegularDB
● compaction removes unnecessary intermediate versions (MVCC)

Tablet

IntentsDB

RegularDB

transactional write

ACID isolation

non-transactional write
 aka "fast-path"

after
commit

Writes Reads

Tx Table

Tablet

commit

find the key

ongoing changes?

co
m

m
ite

d
?

© 2024 All Rights Reserved

Advantage of a new storage layer

25

Beyond horizontal scalability - no vacuum problems 😎
● No bloat: MVCC version are stored per key, removed by RocksDB compaction
● Real Index Only Scans: indexes entries are versioned like tables
● Fast primary key access: index organized tables
● No transaction ID wraparound: clusterwide Hybrid Logical Clock ttimestamp
● transparent compression and encryption

Other advantages 😎
● Connection Manager: a threaded resident connection pool
● pg_hint_plan installed by default
● no downtime upgrades (rolling upgrades)
● rolling restart (online parameter change, key rotation, operating system patching

© 2024 All Rights Reserved 26

Reason for Distributed SQL

- scale-out for elasticity and resilience

- rolling upgrades, geo-distribution

Reason for PostgreSQL compatibility

- no need to learn a new DB, many SQL features

Reason for a fork

- the best compatibility with advanced features

© 2024 All Rights Reserved 27

Major difference with PostgreSQL:

- think more about the primary key (hash/range sharding)

- leverage new access patterns

(primary index, skip scan, index only scan on secondary index)

- understand throughput vs. latency

© 2024 All Rights Reserved 28

When it can be an alternative to PostgreSQL:

- 24/7 system of records (OLTP)

- cloud native (Compute instances, kubernetes pods,... all active)

- multitenant (no hardware limitation to scale)

- geo-distribution (data residency, latency)

Not for datawarehouse (only some pushdowns for analytics)

© 2024 All Rights Reserved

E-mail:

fpachot@yugabyte.com

Blogs:

dev.to/FranckPachot

blog.yugabyte.com/author/fpachot

Twitter:

@FranckPachot

Youtube:

youtube.pachot.net

Twitch:

www.twitch.tv/franckpachot

LinkedIn:

www.linkedin.com/in/franckpachot

