
MIGRATION
- THE EXPEDITION

Raman

Head – Open source Migration Factory

PGConf 2020 – 27th Feb

14:15 to 15:00

Venkat

Technical Architect

AGENDA

2
MIGRATION EXPERIENCE

1
INTRODUCTION

4
Q&A

3
TOOLS

INTRODUCTION

C0 │ GROUP PRESENTATION – JULY 2019│ 4
Financial figures as of 31.12.2018 - Some figures have been rounded up or down

* Excluding insurance policyholders.
** Rounded figure. Headcount at end-2018 excluding temporary staff

ABOUT SOCIETE GENERALE

Societe Generale is one of the leading European financial services groups.

Based on a diversified and integrated banking model, the Group combines financial strength
and proven expertise in innovation with a strategy of sustainable growth, aiming to be the
trusted partner for its clients, committed to the positive transformations of the world.

3 complementary core businesses:

 French Retail Banking

 International Retail Banking & Financial Services

 Global Banking & Investor Solutions

31 million*

individual clients, businesses and
institutional investors

+ 149,000**
members of staff

67 countries
worldwide

€3,864 million
Group Net Income

€25,205 million
in Net Banking Income

10.9%
Common Equity Tier 1 ratio

OUR VALUES
Team Spirit Innovation Responsibility Commitment

C0 │ GROUP PRESENTATION – JULY 2019│ 5
Financial figures as of 31.12.2018 - Some figures have been rounded up or down

1 BILLION
CONNECTIONS/YEAR

70 MILLIONS
NOTIFICATIONS
IN REAL TIME

4+ MILLIONS
APP DOWNLOADS

500 000
CONTRACTS SIGNED
ELECTRONICALLY

40 PETABYTES
OF DATA

IT BUDGET

~EUR 4 BILLION

23 500
IT STAFF IN THE GROUP

40% OF IT TEAMS
WORKING IN AGILE

EUR 650 MILLION
OF INVESTMENT DEDICATED TO
SECURITY OVER 3 YEARS

1500+ API IN PRODUCTION

60% OF ELIGIBLE SERVERS
IN CLOUD

A TECHNOLOGY INTENSIVE COMPANY

6

OUR OPENSOURCE STRATEGY : 3 PILLARS

ATTRACTCONTRIBUTEUSE

❖ OPEN SOURCE FIRST

❖ ALTERNATIVE - EVERY IT ASSET

❖ SUPPORT STRATEGY

❖ PARTNERSHIP - PRODUCT/EVENT

❖ EXPERT CAREER PATH

❖ COMMUNICATE SG AMBITION

❖ SHARING & COLLABORATING

❖ CONTRIBUTION FRAMEWORK

❖ PRODUCT ROADMAP

“Think Opensource first”

7

OUR INHOUSE PG EXPERTS & DEVELOPERS

Technical and Cloud Solution Architect
Expertise in DB, Scripting and Cloud
An AI Enthusiast and an avid reader

ora2pg & code2pg developer

Venkat SUSARLAAnthony NOWOCIEN

Karthik KUMAR Kiran PERICHARLA

PostgreSQL Expert and a Developer (maintainer code2pg)
Expertise in DB, Development,
An avid traveler and Presenter,
Secretary of PostgreSQL FR.

ora2pg & code2pg developer

MIGRATION PROCESS & STATS

9

MIGRATION PROCESS – SETC

Execute Care

▪ Feasibility

▪ Estimate Effort & Cost

▪ Migration

▪ Test

▪ On the job training

▪ Documentation

▪ Support

▪ Bug Fixes &Tuning

Study Train

PGSESSIONS│C0│ 21.11.2019 │ 10

STATS

125+

150+
MIGRATED DB

DB IN THE PIPE

Technologies
Oracle, MSSQL, MySQL, Sybase

Time to Market

• 2 weeks -12 weeks
(based on the

complexity & size)

DB / Apps

Migrated

• Simple to Complex

• 50gb to 1TB size

• 100K code migrated

Delivery
Timelines

• 100% on Data

• 70% on Coding

MIGRATION EXPERIENCE

PG XAAS & MULTI CLOUD

XaaS

Anything as a Service

- Operating System - Storage (Object and File)
- Middleware - Databases
- Certificate - Bigdata
- DNS - Load Balancer

PostgreSQL – SG’s Default Database

SHARING OUR EXPERIENCES ON :

3RD PARTY ENCRYPTION

FDW AND MVIEW MAGIC

LOB EXTRACTION

BYTEA TO OID

DYNAMIC PARTITIONS

ETL TASKS

OTHER NUGGETS

PERFORMANCE

14

3RD PARTY ENCRYPTION

PostgreSQLSource DB

Decrypted Data

- Decrypt data using source
decryption algorithm

- Enable pgcrypto extension
- Define encryption key
- Use pgp_sym_encrypt(data text,

psw text [, options text]) returns

bytea to encrypt and load the data
- Use pgp_sym_decrypt(msg bytea,

psw text [, options text]) returns

text to decrypt and read the data

Challenge : Migrate the encrypted data.

15

FDW AND MVIEW MAGIC

Strategy:
- Extract the table structure using ora2pg.
- Create foreign servers and tables.
- Create Mview.
- Refresh Mview.
- Create batch jobs.

Outcome:
- Seamless merger of schemas from different

applications.
- Faster migration approach for large tables,

compared to ora2pg.

CREATE EXTENSION oracle_fdw;

CREATE SERVER oradb FOREIGN DATA WRAPPER oracle_fdw OPTIONS
(dbserver '//dbserver.mydomain.com:1521/ORADB');

GRANT USAGE ON FOREIGN SERVER oradb TO pguser;

CREATE USER MAPPING FOR pguser SERVER oradb OPTIONS (
USER 'orauser’,
PASSWORD ‘<pwd>’

);

CREATE FOREIGN TABLE ft_tab1 (col1 <datatype> ,col1 <datatype>)
SERVER <foreign_server_name>
OPTIONS (SCHEMA ‘oracle_schema_name', TABLE ‘tab1');

CREATE MATERIALIZED VIEW tab1 AS SELECT
col1, col2, col3
FROM ft_tab1 WITH DATA;

REFRESH MATERIALIZED VIEW tab1 WITH data;

Challenge : Migrate data from multiple source, as daily
activity.

16

LOB EXTRACTION

ORA2PG Config Changes:
.
.
DATA_LIMIT 500 #DEFAULT 10000
BLOB_LIMIT 100 #DEFAULT 500 divide by 10
LONGREADLEN 102400000 #DEFAULT 1047552
ALLOW
EXCLUDE
.
.

Strategy:
- Table segregation LOW,MEDIUM,LARGE (LOB)
- Take the parallelism advantage of ora2pg.

- ora2pg - t COPY - o COPY_X_LOB_LOT
< number >.sql - j 2 - T < LOCATION >

/ LOT < number > - b < LOCATION >
/ LOT < number > - c < LOCATION >
/ LOT < number > /
< specific_config > _LOT < number >.conf

- 8 core CPU and 64gb RAM

Outcome:
- Total extraction time came down to 12hrs from

72hrs.

Challenge : Data extraction of 300gb with LOB
(character) was taking more than 72hrs.

17

BYTEA TO OID

Issue while inserting data into OID column:

INSERT INTO tab1 SELECT * FROM tab1_bkp;
ERROR: 42804: COLUMN col4 IS OF TYPE oid but expression IS OF TYPE bytea
line 1: INSERT INTO tab1 SELECT * FROM tab1_bkp

^
HINT: You will need TO rewrite OR CAST the expression.
LOCATION: transformAssignedExpr, parse_target.c :540
Time: 0.427 ms

Challenge : Specific application requirement to have OID column data type,while ora2pg does to BYTEA.

18

BYTEA TO OID

CREATE CAST(bytea AS oid) WITH FUNCTION blob_write (bytea)
AS ASSIGNMENT ;

ALTER TABLE tab1 RENAME TO tab1_bkp;

CREATE TABLE tab1 (
col1 bigint,
col2 bigint,
col3 oid);

INSERT INTO tab1 SELECT * FROM tab1_bkp;

CREATE OR REPLACE FUNCTION blob_write (lbytea bytea)
RETURNS oid VOLATILE
LANGUAGE plpgsql
AS f

DECLARE
loid oid;
lfd integer;
lsize integer;

BEGIN
IF
(lbytea IS NULL)
THEN RETURN NULL;
END IF;
loid := lo_create(0);
lfd := lo_open(loid, 131072);
lsize := lowrite(lfd, lbytea);
PERFORM

lo_close(lfd);
RETURN loid;

END;
f;

Solution:

- Load the table, with BYTEA, from ora2pg COPY statement.
- Create blob_write function.
- Create CAST.
- Insert Data into table.

Strategy:

19

DYNAMIC PARTITIONS

Strategy:
- Application team wanted the source

partitioned data to be moved to PG
partitioned data.

- PG version 9.6
- Load the data into PG in a non-partitioned

table.
- Partition it using INHERITANCE.
- Insert the data.
- Create trigger to Dynamically create

partitions, for future loads.

Outcome:
- Much easier and fast to move the data to Postgres.
- No yearly creation of partitions.

Sample Steps:

CREATE TABLE tab1_2012_02
(audit_id bigint, datetime timestamp without time zone,

trigger_event character varying(255))
INHERITS (tab1);

CREATE TABLE tab1_2012_03
(audit_id bigint, datetime timestamp without time zone,

trigger_event character varying(255))
INHERITS (tab1);

CREATE TABLE tab1_14aug2019 AS TABLE tab1;

TRUNCATE TABLE tab1;

INSERT INTO tab1_2012_02
SELECT * FROM tab1_14aug2019
WHERE datetime >= '2012-02-01 00:00:00' AND datetime <=

'2012-02-29 23:59:00’;
INSERT INTO tab1_2012_03

SELECT * FROM tab1_14aug2019
WHERE datetime >= '2012-03-01 00:00:00' AND datetime <=

'2012-03-31 23:59:00';

Challenge : Dynamic partitions for future load after the
migration.

20

DYNAMIC PARTITIONS

CREATE OR REPLACE FUNCTION dyn_create_partition_and_insert ()
RETURNS TRIGGER

AS $BODY$
DECLARE

partition_date text; PARTITION TEXT;month_start text;month_end text;
BEGIN

month_start := date_trunc('month', NEW.datetime); month_end := (date_trunc('month', NEW.datetime) + interval '1 MONTH - 1 day’);
partition_date := to_char(NEW.datetime, 'YYYY_MM’); PARTITION := TG_TABLE_NAME || '_' || partition_date;

IF NOT EXISTS (
SELECT relname FROM pg_class WHERE relname = PARTITION) THEN RAISE NOTICE 'A partition has been created %', PARTITION;

RAISE NOTICE 'value of month start %', month_start; RAISE NOTICE 'value of month end %', month_end;
RAISE NOTICE 'value of datetime %', NEW.datetime;

EXECUTE 'CREATE TABLE ' || PARTITION || ' (check (datetime >= ''' || month_start || ''' AND datetime <= ''' || month_end || '‘’))
INHERITS (' || TG_TABLE_NAME || ');’;
END IF;

EXECUTE 'INSERT INTO ' || PARTITION || ' SELECT(' || TG_TABLE_NAME || ' ' || quote_literal(NEW) || ').*;’;
RETURN NULL; END; $BODY$

LANGUAGE plpgsql
VOLATILE
COST 100;

21

DYNAMIC PARTITIONS

Sample Steps:

CREATE TRIGGER tab1_part_insert_trigger
BEFORE INSERT ON tab1

FOR EACH ROW
EXECUTE PROCEDURE dyn_create_partition_and_insert ();

CREATE VIEW show_partitions_tab1
AS SELECT nmsp_parent.nspname
AS parent_schema, parent.relname
AS parent, nmsp_child.nspname
AS child_schema, child.relname
AS child
FROM pg_inherits
JOIN pg_class parent ON pg_inherits.inhparent = parent.oid
JOIN pg_class child ON pg_inherits.inhrelid = child.oid
JOIN pg_namespace nmsp_parent ON nmsp_parent.oid =
parent.relnamespace
JOIN pg_namespace nmsp_child ON nmsp_child.oid =
child.relnamespace
WHERE parent.relname = 'tab1';

INSERT INTO tab1 VALUES (7926, '2019-09-17
14:40:00', 'INSERT');

CHECK the Partitions:

SELECT * FROM show_partitions_tab1 WHERE child LIKE '%2019%’;

parent_schema | parent | child_schema | child
--------------------+---------+------------------+-------------------

XXXXXXXXX | tab1 | XXXXXXXXX | tab1_2019_02
XXXXXXXXX | tab1 | XXXXXXXXX | tab1_2019_03
XXXXXXXXX | tab1 | XXXXXXXXX | tab1_2019_04

22

ETL TASKS – BE VIGILANT

Challenges :
- Post migration of database and batch job code to

postgresql, ETL was taking 6 hrs. instead of

required 20min

- Handling discarded rows

Trials:
- 1. We tried approaches like pgloader, insert statements, tuning of

the odbc drivers.

- 2. Used the insert and parallel mechanism to improve the time and

it came down to 18mins.

- Wrote specific function “pg_discard”

23

OTHER NUGGETS

Facts

Hierarchical queries

Explicit commit/rollback within a SP

Global variables in a package

Autonomous transaction

Joins

Read/ write from/to OS file

Oracle

CONNECT BY

COMMIT/ROLLBACK

DECLARE in package spec

pragma AUTONOMOUS_TRANSACTION

Supports Non ANSI and ANSI joins

UTL_FILE package

PostgreSQL

WITH recursive

Version <11 use dblink inside the
function

to set : set Globalvar.var1 = 'test';
to get : current_setting('Globalvar.var1');

dblink

Supports only ANSI

UTL_FILE provided by orafce extension

24

PERFORMANCE - SUCCESS FACTOR

- Creating indexes and avoiding UPPER and LOWER functions in WHERE eg. Think better alternatives
upper(column1) = upper('test’)

- Rewriting the logic (predicate clause)

- Improved by modifying obsolete library for ODBC client (13hrs to 1 hr)

90% - Improved performance using WITH CTE (Common Table Expressions) on Corelated subquery

30%

120%

176%

OUR KEY TOOLS

TOOLS WE USE

ORA2PG
- USED FOR DATABASE ESTIMATION & MIGRATION

CODE2PG
- USED FOR APPLICATION (EMBEDED SQL) ESTIMATION & MIGRATION HINTS

27

ORA2PG

• Migration tool from Oracle to PostgreSQL developed by Gilles Darold.

• First release in 2001, v20 today.

• Added MySQL to PostgreSQL recently.

• We @Migration Factory uses it extensively for estimations & migrations

• SG’s developers had enhanced to add MSSQL estimation & Migration to PostgreSQL

• Link : https://github.com/societe-generale/ora2pg-mssql

• Discussion in progress with Gilles Darold for code integration .

https://github.com/societe-generale/ora2pg-mssql

28

ORA2PG

ora2pg --project_base /home/user/ora2pg --init_project aw_project
[…]

$ cat ora2pg.conf
[...]

ORACLE_DSN dbi:Oracle:host=myhost;sid=mydb;port=myport
ORACLE_USER myoracleuser
ORACLE_PWD myoraclepwd

[...]

$ ora2pg -t SHOW_VERSION -c config/ora2pg.conf

Oracle Database 11g Enterprise Edition Release 11.2.0.3.0

Available on https://github.com/darold/ora2pg/releases

FOR ORACLE

https://github.com/darold/ora2pg/releases

29

ORA2PG

Available on https://github.com/societe-generale/ora2pg-mssql

ora2pg --project_base /home/user/ora2pg --init_project aw_project
[…]

$ cat ora2pg.conf
[...]

ORACLE_DSN dbi:ODBC:Driver = ODBC Driver 17 FOR SQL SERVER; SERVER = myserver.myhost, myport; DATABASE = mydatabase
ORACLE_USER mssql_user
ORACLE_PWD mssql_pwd
[...]

$ ora2pg -t SHOW_VERSION -c config/ora2pg.conf

Microsoft SQL SERVER 2014 (SP1 - GDR) (KB4019091) - 12.0.4237.0 (X64)

FOR MS SQL

https://github.com/societe-generale/ora2pg_mssql
https://github.com/societe-generale/ora2pg-mssql

30

ORA2PG : ORACLE

31

ORA2PG : MS SQL

32

CODE2PG

EXTRA

SVN direct access

Oracle, SQL Server, DB2

CONFIGURABLE

Optional config file

Estimations can be adjusted depending
on team expertise

Can simulate orafce usage

DEVELOPER

Help him identify code to migrate and
propose an equivalent instruction if
possible

Can tag source code

TECH

Perl script

Several Perl
modules needed

ESTIMATIONS

In man/days

Report formats available in html, txt

LINK :- https://github.com/societe-generale/code2pg

https://github.com/societe-generale/code2pg

33

CODE2PG

./code2pg -e java -e jsp -l comma-strings -d /tmp/project -o report.html

34

CODE2PG

35

WAYS TO KNOW MORE

Contact :

Janakiraman VENUGOPALAN
Janakiraman.venugopalan@socgen.com

Jyotiprasad RATH
jyotiprasad.rath@socgen.com

https://github.com/societe-generale

https://github.com/societe-generale/ora2pg-mssql

https://github.com/societe-generale/code2pg

mailto:Janakiraman.venugopalan@socgen.com
mailto:jyotiprasad.rath@socgen.com
https://github.com/societe-generale
https://github.com/societe-generale/ora2pg-mssql
https://github.com/societe-generale/code2pg

Q & A

