
© 2013 EDB All rights reserved 8.1. 1

Knowing your data cluster and
startup processes

Amul Sul

© 2019 EnterpriseDB Corporation. All rights reserved. 2

Who am I?

• My name is Amul Sul.
• I’m a database developer at EnterpriseDB.

• Working from Pune, India office.

• PostgreSQL contribution:
• Hash Partitioning.
• Extended hash functions.
• Bug fixes and review work.

© 2019 EnterpriseDB Corporation. All rights reserved. 3

Agenda

Part 1 : Database File Layout
• Overview of storage format at the level of files and

directories.
• Dig more into base and pg_tblspc directories.

Part 2 : Process Architecture
• Overview of server processes.
• Quick walk through each of them.
• Client connection steps.

© 2019 EnterpriseDB Corporation. All rights reserved. 4

Part 1 : Database file layout
● Data directory, commonly referred to as PGDATA (name

of the environment variable).

● A common location for PGDATA is /var/lib/pgsql/data.

● PGDATA directory contains several subdirectories and
control files.

● Configuration files by default are located into PGDATA,
can be placed elsewhere.

© 2019 EnterpriseDB Corporation. All rights reserved. 5

Data directory : 8 Files & 18 directories

PG_VERSION
base

global

pg_hba.conf

postmaster.opts

postmaster.pid

current_logfiles

pg_ident.conf

$PGDATA

pg_wal

pg_commit_ts

pg_logical

pg_notify

pg_serial

pg_stat

pg_multixact

pg_replslot

pg_snapshots

pg_stat_tmp

pg_tblspc

log

pg_xact

pg_dynshmem

pg_subtrans pg_twophase

postgresql.conf

Postgresql.auto.conf

F
i
l
e
s

D
i
r
e
c
t
o
r
i
e
s

D
i
r
e
c
t
o
r
i
e
s

© 2019 EnterpriseDB Corporation. All rights reserved. 6

Data directory : 8 Files

base

global

pg_wal

pg_commit_ts

pg_logical

pg_notify

pg_serial

pg_stat

pg_multixact

pg_replslot

pg_snapshots

pg_stat_tmp

pg_tblspc

log

pg_xact

pg_dynshmem

pg_subtrans pg_twophase

D
i
r
e
c
t
o
r
i
e
s

D
i
r
e
c
t
o
r
i
e
s

PG_VERSION

pg_hba.conf

postmaster.opts

postmaster.pid

current_logfiles

pg_ident.conf

postgresql.conf

Postgresql.auto..conf

F
i
l
e
s

A file containing the major version number of PostgreSQL

A file to set configuration parameters

A file to store configuration parameters that are set in ALTER SYSTEM

A file to store the command-line options the server was last started with

A file to control client authentication

A lock file recording the current postmaster process ID (PID), cluster data directory
path, postmaster start timestamp, port number, Unix-domain socket directory path,
first valid listen_address (IP address or *, or empty if not listening on TCP), and
shared memory segment ID. This file is not present after server shutdown.

A file to store the log file(s) currently written to by the logging collector

 A file to store user name mapping

$PGDATA

© 2019 EnterpriseDB Corporation. All rights reserved. 7

D
i
r
e
c
t
o
r
i
e
s

Data directory : 18 directories

PG_VERSION

pg_hba.conf

postmaster.opts

postmaster.pid

current_logfiles

pg_ident.conf

pg_multixact

pg_replslot

pg_snapshots

pg_stat_tmp

pg_tblspc

log

pg_xact

pg_dynshmem

pg_twophase

postgresql.conf

Postgresql.auto..conf

F
i
l
e
s

D
i
r
e
c
t
o
r
i
e
s

Directory contains
WAL (Write Ahead Log) files

Directory contains
 status data for logical decoding

Directory contains
 information about committed

serializabletransactions

Directory contains
 subtransaction status data

Directory contains
per-database subdirectories

base

global

pg_wal

pg_commit_ts

pg_logical

pg_notify

pg_serial

pg_stat

pg_subtrans

Directory contains
cluster-wide tables,

such as pg_database

Directory contains
 transaction commit timestamp data

Directory contains
 LISTEN/NOTIFY status data

Directory contains
 permanent files for the

statistics subsystem

$PGDATA

© 2019 EnterpriseDB Corporation. All rights reserved. 8

Data directory : 18 directories (cont..)

PG_VERSION
base

global

pg_hba.conf

postmaster.opts

postmaster.pid

current_logfiles

pg_ident.conf

pg_wal

pg_commit_ts

pg_logical

pg_notify

pg_serial

pg_stat

pg_subtrans

postgresql.conf

Postgresql.auto..conf

F
i
l
e
s

D
i
r
e
c
t
o
r
i
e
s

D
i
r
e
c
t
o
r
i
e
s

Directory contains symbolic links to tablespaces

Directory contains server log files

Directory contains transaction commit status data

Directory contains files used by the dynamic shared
memory subsystem

Directory contains multitransaction status data
(used for shared row locks)

Directory contains replication slot data

Directory contains exported snapshots

Directory contains temporary files for the statistics
subsystem

Directory contains state files for prepared transactions

pg_multixact

pg_replslot

pg_snapshots

pg_stat_tmp

pg_tblspc

log

pg_xact

pg_dynshmem

pg_twophase

$PGDATA

© 2019 EnterpriseDB Corporation. All rights reserved. 9

Data directory : base directory

PG_VERSION
base

global

pg_hba.conf

postmaster.opts

postmaster.pid

current_logfiles

pg_ident.conf

pg_wal

pg_commit_ts

pg_logical

pg_notify

pg_serial

pg_stat

pg_multixact

pg_replslot

pg_snapshots

pg_stat_tmp

pg_tblspc

log

pg_xact

pg_dynshmem

pg_subtrans pg_twophase

postgresql.conf

Postgresql.auto..conf

F
i
l
e
s

D
i
r
e
c
t
o
r
i
e
s

D
i
r
e
c
t
o
r
i
e
s

1 13877 13878
So on...

$PGDATA

basebase

These are database oids, let’s find the names:

postgres=# SELECT oid, datname FROM pg_database
postgres-# WHERE oid in (1,13877,13878) ORDER BY oid;
 oid | datname
-------+-----------
 1 | template1
 13877 | template0
 13878 | postgres
(3 rows)

© 2019 EnterpriseDB Corporation. All rights reserved. 10

Data directory : base directory

PG_VERSION
base

global

pg_hba.conf

postmaster.opts

postmaster.pid

current_logfiles

pg_ident.conf

pg_wal

pg_commit_ts

pg_logical

pg_notify

pg_serial

pg_stat

pg_multixact

pg_replslot

pg_snapshots

pg_stat_tmp

pg_tblspc

log

pg_xact

pg_dynshmem

pg_subtrans pg_twophase

postgresql.conf

Postgresql.auto..conf

F
i
l
e
s

D
i
r
e
c
t
o
r
i
e
s

D
i
r
e
c
t
o
r
i
e
s

So on...

$PGDATA

basebase

1
(template1)

13877
(template0)

13878
(postgres)

If you create another database you’ll have another directory then:

postgres=# CREATE DATABASE mydatabase;
CREATE DATABASE

postgres=# SELECT oid FROM pg_database WHERE datname = 'mydatabase';
 oid

 16384
(1 row)

© 2019 EnterpriseDB Corporation. All rights reserved. 11

Data directory : base directory

PG_VERSION
base

global

pg_hba.conf

postmaster.opts

postmaster.pid

current_logfiles

pg_ident.conf

pg_wal

pg_commit_ts

pg_logical

pg_notify

pg_serial

pg_stat

pg_multixact

pg_replslot

pg_snapshots

pg_stat_tmp

pg_tblspc

log

pg_xact

pg_dynshmem

pg_subtrans pg_twophase

postgresql.conf

Postgresql.auto..conf

F
i
l
e
s

D
i
r
e
c
t
o
r
i
e
s

D
i
r
e
c
t
o
r
i
e
s

$PGDATA

basebase

1
(template1)

13877
(template0)

13878
(postgres)

PG_VERSION

pg_filenode.map

PG_VERSIONPG_VERSION

3079

3079_fsm

3079_vm

PG_VERSION

pg_filenode.map

PG_VERSIONPG_VERSION

3079

3079_fsm

3079_vm

F
i
l
e
s

F
i
l
e
s

16384
(mydatabase)

© 2019 EnterpriseDB Corporation. All rights reserved. 12

Data directory : base directory

PG_VERSION
base

global

pg_hba.conf

postmaster.opts

postmaster.pid

current_logfiles

pg_ident.conf

pg_wal

pg_commit_ts

pg_logical

pg_notify

pg_serial

pg_stat

pg_multixact

pg_replslot

pg_snapshots

pg_stat_tmp

pg_tblspc

log

pg_xact

pg_dynshmem

pg_subtrans pg_twophase

postgresql.conf

Postgresql.auto..conf

F
i
l
e
s

D
i
r
e
c
t
o
r
i
e
s

D
i
r
e
c
t
o
r
i
e
s

$PGDATA

basebase

1
(template1)

13877
(template0)

13878
(postgres)

PG_VERSION

pg_filenode.map

PG_VERSIONPG_VERSION

3079

3079_fsm

3079_vm

PG_VERSION

pg_filenode.map

PG_VERSIONPG_VERSION

3079

3079_fsm

3079_vm

F
i
l
e
s

F
i
l
e
s

16384
(mydatabase)

postgres-# SELECT oid, relname
postgres-# FROM pg_class
postgres-# WHERE relfilenode = 3079;
 oid | relname
------+--------------
 3079 | pg_extension
(1 row)

© 2019 EnterpriseDB Corporation. All rights reserved. 13

– Relation of table oid,and relfilenode

mydatabase=# CREATE TABLE foo(i int);
CREATE TABLE

mydatabase=# SELECT oid, relfilenode,
mydatabase=# pg_relation_filepath(relname::text)
mydatabase-# FROM pg_class WHERE relname = 'foo';
 oid | relfilenode | pg_relation_filepath
-------+-------------+----------------------
 16427 | 16427 | base/16384/16427
(1 row)

mydatabase=# truncate foo;
TRUNCATE TABLE

mydatabase=# SELECT oid, relfilenode,
mydatabase=# pg_relation_filepath(relname::text)
mydatabase=# FROM pg_class WHERE relname = 'foo';
 oid | relfilenode | pg_relation_filepath
-------+-------------+----------------------
 16427 | 16430 | base/16384/16430
(1 row)

Data directory : base directory

© 2019 EnterpriseDB Corporation. All rights reserved. 14

Data directory : pg_tblspc directory

PG_VERSION
base

global

pg_wal

pg_tblspc

log

pg_xact

postgresql.conf

Postgresql.auto..conf

F
i
l
e
s

D
i
r
e
c
t
o
r
i
e
s

D
i
r
e
c
t
o
r
i
e
s

$PGDATA

pg_tblspcpg_tblspc

Empty

The tablespace directory is addressed by a symbolic link
from the pg_tblspc subdirectory.

The link name is the same as the OID value of tablespace.

mydatabase=# CREATE TABLESPACE my_tablespace LOCATION '/tmp/tblspc';
CREATE TABLESPACE
(1 row)

– On linux terminal

$ tree -C -a /var/lib/pgsql/11/data/pg_tblspc/

/var/lib/pgsql/11/data/pg_tblspc/
 └── 16389 -> /tmp/tblspc

1 directory, 0 files

© 2019 EnterpriseDB Corporation. All rights reserved. 15

Data directory : pg_tblspc directory

PG_VERSION
base

global

pg_wal

pg_tblspc

log

pg_xact

postgresql.conf

Postgresql.auto..conf

F
i
l
e
s

D
i
r
e
c
t
o
r
i
e
s

D
i
r
e
c
t
o
r
i
e
s

$PGDATA

pg_tblspcpg_tblspc

16389

/tmp/tblspc/

‘my_tablespace’ - naming conventios is as follow:

PG _ <Major version> _ <Catalogue version number>

Directory for ‘mydatabase’

Relfilenode of ‘bar’ relation

symbolic link

mydatabase=# select pg_relation_filepath('bar');
 pg_relation_filepath

 pg_tblspc/16389/PG_11_201809051/16384/16390
(1 row)

– On linux terminal
$ tree -C -a /tmp/tblspc
/tmp/tblspc

 └── PG_11_201809051
 └── 16384
 └── 16390

2 directories, 1 file

© 2019 EnterpriseDB Corporation. All rights reserved. 16

Part 2 : Process Architecture

● PostgreSQL is a client/server type RDMS with the multi-
process architecture and runs on a single host.

● A collection of multiple processes cooperatively managing one
database cluster is usually referred to as a 'PostgreSQL server', and
it contains the following type of processes:

● A postmaster process is the parent of all the processes related
to a database cluster management.

● Various background processes perform processes of each
feature (e.g., VACUUM, CHECKPOINT, etc) for database
management.

● Each backend process handles all queries and statements
issued by a connected client.

● In the background worker process supported from version
9.3, it can perform any processing implemented by users.

© 2019 EnterpriseDB Corporation. All rights reserved. 17

Process structure

 fork()

Start

 fork()

Postmaster
(Control process)

startup

logger

checkpointer

background writer

walwriter

stats collector

logical replication
launcher

autovacuum launcher

Write server logs

Perform checkpoints

Write dirty buffer to
persistent storage

Write WAL

Collect statistics
information

archiver
WAL archiver

Manage autovacuum
works

Manage replication
works

Dynamic background
workers

Dynamic background
workers

Dynamic background
workers

Dynamic background
processes

Streaming replication
processes

WAL sender/receiver

Recovery
(Only at startup)

© 2019 EnterpriseDB Corporation. All rights reserved. 18

 fork()

Write server logs

 fork()

Postmaster
(Control process)

startup

Recovery
(Only at startup)

logger

stats collector

logical replication
launcher

autovacuum launcher

Collect statistics
information

archiver
WAL archiver

Manage autovacuum
works

Manage replication
works

Dynamic background
workers

Dynamic background
workers

Dynamic background
workers

Dynamic background
processes

Streaming replication
processes

WAL sender/receiver

Process structure

Start
checkpointer

background writer

walwriter

Write dirty buffer to
persistent storage

Write WAL

● Writes checkpoint record in WAL & flushes
all dirty data pages to disk

● Performs every checkpoint_timeout
seconds or when all max_wal_size limit
reached.

● Wakes every bgwriter_delay seconds

● Writes modified pages to disk, & evicts those
pages from the shared buffer pool

● bgwriter_lru_maxpages controls buffers to be
written

Perform checkpoints

 ● Writes and syncs Write Ahead Logs(WAL) to disk upon transaction commit

● WALs allow transactions to be recovered in the event of a system crash

© 2019 EnterpriseDB Corporation. All rights reserved. 19

Start Write dirty buffer to
persistent storage

Write WAL

Perform checkpoints

 fork()

 fork()

Postmaster
(Control process)

startup

Recovery
(Only at startup)

logical replication
launcher

Manage replication
works

Dynamic background
workers

Dynamic background
workers

Dynamic background
workers

Dynamic background
processes

checkpointer

background writer

walwriter

autovacuum launcher
Manage autovacuum

works

Streaming replication
processes

WAL sender/receiver

 ● Optional, default OFF

● All processes including postmaster do attache to this process to log the server information

● All information logged into $PGDATA/log directory

● Do supports different file formats supported

Process structure

 ● Optional, default is ON

● Collects information about cluster activity:

● Number of access to the tables and indexes

● Total number of rows in each table

● Information about VACUUM and ANALYZE
actions for each table

● Collection of statistics adds some overhead to
query execution, but allows the query planner
to make better choices

`

 ● Optional, default OFF

● Copies WAL segment files to the archival area at the time when WAL segment switches

● Feature is usually used for hot physical backup and PITR (Point-in-Time Recovery)

● The path of the archival area is set to the configuration parameter archive_command

● wal_level configuration parameter to replica or higher, archive_mode to ON.

● archive_command = 'cp %p /home/postgres/archives/%f'

logger

stats collector

Collect statistics
information

archiver
WAL archiver

Write server logs

© 2019 EnterpriseDB Corporation. All rights reserved. 20

Start

 fork()

Write server logs

 fork()

Postmaster
(Control process)

startup

Recovery
(Only at startup)

logger

stats collector

Collect statistics
information

archiver
WAL archiver

Dynamic background
workers

Dynamic background
workers

checkpointer

background writer

walwriter

Write dirty buffer to
persistent storage

Write WAL

Perform checkpoints

Process structure

 ● WAL Sender :

● This process sends WALs the standby server

● One process for each standby server

● WAL Receiver:

● This process receives WALs from the primary server

● The WALs are then replayed to bring the standby in sync
with the primary

● Optional, default is ON.

● Automates the execution of VACUUM and
ANALYZE commands

● A postmaster which spawns autovacuum worker
processes for each database:

● Starts one worker on each database (up to
autovacuum_max_workers) every
autovacuum_naptime seconds

● Worker processes check each table and
index in a database and execute VACUUM or
ANALYZE as needed.

logical replication
launcher

autovacuum launcher
Manage autovacuum

works

Manage replication
works

Dynamic background
workers

Dynamic background
processes

Streaming replication
processes

WAL sender/receiver

● Optional, Default is ON (wal_level >= logical)

● On the publisher, launches worker to send the
changes to the subscriber

● At subscriber, launches a worker to received
changes & syncs the table.

© 2019 EnterpriseDB Corporation. All rights reserved. 21 21

Client connection

Postmaster
(Control process)

logger

checkpointer

background writer

walwriter

stats collector

logical replication
launcher

autovacuum launcher

archiver

Dynamic background workersDynamic background workers
Dynamic background
workers

Streaming replication
processes

Client
(frontend)

Server
(backend)

libpqpsql

jdbcApplication

connection driver Postgres

Postgres

V3 protocol

1. R
equest

2. fork()

3. SQLs

1. 2

© 2019 EnterpriseDB Corporation. All rights reserved. 22

References:

1.PostgreSQL 11 official documentation

2.Overview of Postgres Utility Processes by EDB Dave Thomas

3.The Internals of PostgreSQL by Hironobu SUZUKI.

https://www.postgresql.org/docs/11/index.html
https://www.slideshare.net/EnterpriseDB/overviewutilityprocesses-finalaug222013
http://www.interdb.jp/pg/index.html

© 2019 EnterpriseDB Corporation. All rights reserved. 23

Thank You !!

Questions?

!! We Are Hiring !!
● UI Developers

Technical Support
Technical Sales Engineer

● Java Full Stack Developers
Python Full Stack Developers
Java Technical Architect

Contact us on akshay.chavan@enterprisedb.com or visit us
at the booth.

● Sales

	Introduction to EDB
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

